
C.2 MoDE in Use

Purpose: To demonstrate how MoDE can be used to create interfaces rapidly and

easily.

Length: 15 minutes, 30 seconds.

Contents:

� Binary desk calculator.

� Self editing of MoDE.

� Windows in window.

� Creating an oddly shaped window.

121



Appendix C

Videotape

Copies of this videotape may be ordered from the Textlab Research Group, Depart-

ment of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175.

Inquiries may be e-mailed to textlab@cs.unc.edu.

The videotape consists of two sections described below.

C.1 Sample Interfaces Built with MoDE

Purpose: To demonstrate some of the interfaces that can be created with MoDE.

Length: 11 minutes, 30 seconds.

Contents:

� Network of hypertext nodes.

� Oddly shaped window.

� Enter/leave event test.

� Di�erent highlighting styles and levels of direct manipulation.

� Two types of moving things.

� Scanned images and polling text editor.

� Roam box.

� Three styles of menus.

120



B.4.6 copying

deepCopy

Override to prevent copying the delegate, which will loop back to rootMode and

copy a lot of unnecessary objects.

duplicate

Return a copy of my structure.

deepCopy

Check self against the OccurrenceDictionary to avoid loops when making du-

plicates. This method is also de�ned in the Mode, MController, and MDisplay-

Object class.

B.4.7 connection model support

These methods are used by the Mode Composer.

clearAllConnections

Remove all connections to other objects. This is issued when a mode is about

to be removed.

delegate

Return the visual representative. This is used by the Mode Composer.

removeLink: aLink

Remove the link aLink.

B.4.8 attribute editor

editAttributes

Allow the user to edit the attributes of a mode. For example, the text of a text

label. Subclasses often override this method to provide di�erent editors.

B.4.9 class methods for: instance creation

new

Return a new instance of this class.

119



attachModeTo: aMode absAt: p

Attach my mode to aMode as a submode at screen coordinates p.

attachModeTo: aMode absAt: p extent: e

Attach my mode to aMode as a submode at screen coordinates p and set the

extent of mode to e.

attachModeTo: aMode at: p

Attach my mode to aMode as a submode at a local coordinates p.

attachModeTo: aMode at: p extent: e

Attach my mode to aMode as a submode at a local coordinates p and set the

extent of mode to e.

B.4.4 drag support

dragControllerFor: aSymbol

Return the default drag controller. When an object is dragged, all other objects

on the screen switch to a di�erent controller to perform the interaction.

B.4.5 Mode-initializations

Create the components of a mode and connect them together.

defaultMMSControllerClass

This method is used in setUpController. Returns the default class of the con-

troller.

defaultModeClass

This method is used in setUpMode. Returns the default class of the mode.

setUpAppearance

The default is to do nothing.

setUpController

Create and connection the controller.

setUpMode

Create and connection the mode.

118



Semantic objects are programmable in the Mode framework. If an interaction

technique is created by coding (instead of using the Mode Composer), it will have its

own class which is a subclass of the SemanticObject class. Instances of this interaction

technique are created by sending creation messages to its class. The SemanticObject

class de�nes a set of initialization methods to set up the parts in the Mode framework.

They are \setUpMode," \setUpController," and \setUpAppearance." Whenever a

subclass of SemanticObject is sent a creation message, these three methods are invoked

automatically to create and initialize the components of a mode and to connect them

together.

B.4.1 access

mode

Return the mode.

mode: aMode

Set mode to aMode.

target1

Return the connection stored in target1.

target1: aTargetObject

Set the connection to aTargetObject.

B.4.2 initialize-release

initialize

Initialize self, mode, and controller.

release

Release all references outward to facilitate the garbage collection.

B.4.3 mode attaching

Methods in this protocol are de�ned for the convenience of attaching the mode of a

semantic object to another mode.

attachModeTo: aMode

Attach my mode to aMode as a submode.

117



B.3.7 testing

containsPoint: aPoint

Test whether aPoint falls into my image area. This is used by mode to decide

whether an event falls into its area.

B.3.8 display box access

boundingBox

Return the bounding box.

boundingBox: aBox

Set the bounding box to aBox.

computeBoundingBox

Compute the bounding box from the bounding boxes of the objects in the

contents collection.

B.3.9 copying

deepCopy

Override the de�nition in the super class to avoid copying the \contents" and

the forms.

B.3.10 class methods for: instance creation

new

Create a new instance.

B.4 SemanticObject Class

superclass: Model

instanceVariables:

� mode { The mode.

� delegate { The visual representative of self.

� target1 { Stores the connection to other objects.

116



B.3.5 displaying

borderWithUnClippedDispBox: unclippedDispBox visibleRects: visibleRects

Display the border only.

displayContentsOn: aMedium transformation: aTrans clippingBox: aVis-

ibleRect

Display the objects in the contents collection on a Medium.

displayOn: aMedium withUnClippedDispBox: unclippedDispBox visibleRects:

visibleRects

Take the unclipped displayBox and visible rectangles within the box of a

mode, draw self on aMedium. This is the main method used by the mode.

fastDisplayOn: aMedium withUnClippedDispBox: unclippedDispBox vis-

ibleRects: visibleRects

Use the bu�ered appearance to display.

B.3.6 bu�ering

Methods in this protocol bu�er the output of the display object to speed up the

displaying.

bu�erWithExtent: ext

Bu�er the output in a form and use the form to draw faster. The \ext" speci�es

the extent of the unclipped display box. It is needed to draw the border.

makeAbsoluteFaster

This one doesn't care what is in the contents collection or whether the back-

ground color is nil. It just bu�ers. Under normal conditions, the \makeFaster"

method is recommended.

makeFaster

Bu�er only when the contents contain display objects other than Form and Text

(both can be displayed fast without any bu�ering).

unBu�er

Throw away the bu�er and stop bu�ering.

115



relAdd: aDisplayObject

Add aDisplayObject to the contents collection. O�set the input object by the

border width so that it will not be obscured by the border.

borderColor

Return the color of the border.

borderColor: aColor

Set the border color to aColor. Disable the bu�ering since the appearance has

been changed. This is not used in highlighting since rebu�ering the image for

every highlight and deHighlight is very slow.

borderColorTemp: aColor

Temporarily set the border color to aColor. This is used by highlights. By pass

the bu�ering mechanism.

borderWidth

Return the border width.

borderWidth: aWidth

Set the border width to aWidth.

borderWidthTemp: aWidth

Temporarily set the border width to aColor. This is used by highlights. By

pass the bu�ering mechanism.

clear

Remove all objects in the contents collection.

contents

Return the contents collection.

insideColor

Return the background color.

B.3.4 inversion

inverse

Invert the display object.

inverse: ext

Invert the display object with bounding box extent set to ext.

114



TheMDisplayObject class is a subclass of the Smalltalk DisplayObjectclass. In-

stances of the MDisplayObject class control the \background" of modes. The \back-

ground" includes the inside color, the border, and zero or more displayable objects.

The instance variable \contents" hold an OrderedCollection that keeps these dis-

playable objects. All objects that understand the protocols de�ned in the Display-

Object class can be put into this collection. They can be text, drawings, forms, and

animated pictures.

The display method accepts two arguments from the mode{a display box and

a collection of visible rectangles. The display box de�nes the size and position of the

mode. The visible rectangles de�ne the visible portion of the mode computed by the

clipping algorithm.

The MDisplayObject has the capability to bu�er its output as a bitmap. This

speeds up the display of complex objects.

When the \boundingBox" is nil, a display object will not scale the contents

when outputting. When the \boundingBox" is not nil, it will scale the output ac-

cording to the di�erence of the \unclippedDispBox" from the mode and the \bound-

ingBox."

B.3.1 transforming

translateBy: aPoint

Translate all objects in the contents collection. Special treatment is needed

because some DisplayObject (Path, for example) returns a new instance instead

of changing their o�sets when issued a translateBy: message.

B.3.2 initialize-release

initialize

Initialize the contents to an empty OrderedCollection.

B.3.3 accessing

absAdd: aDisplayObject

Add the aDisplayObject (any Smalltalk DisplayObject) into the contents col-

lection. Does not aDisplayObject by the amount of borderWidth. This method

is for the majority of use; \relAdd:" is included for convenience.

113



B.2.10 class methods for: instance creation

new

Return a new controller.

view: aView

Return a new controller with view set to aView. This is for the compatibility

with MVC.

B.2.11 class methods for: access

eventResponsesDict

Every class has a dictionary to record the events and their responses that are

shared by all the instances of that class. This dictionary is initialized in the

class initialize method.

B.2.12 class methods for: initialize

ERDinit

Initialize the event responses dictionary.

initAllERDict

This is called every time when a new session is started to allow changes to the

event responses dictionary to propagate to subclasses.

B.3 MDisplayObject Class

superclass: DisplayObject

instanceVariables:

� contents { A OrderedCollection that holds the displayable objects.

� insideColor { Background color.

� borderWidth { Border width of the mode.

� borderColor { Border color.

� form { A bitmap that bu�ers the appearance.

� boundingBox { A rectangle that de�nes the boundary of the contents.

112



expandLeftMenu

Ask the semantic object for the left button menu and use it to interact with the

user.

expandMiddleMenu

Ask the semantic object for the middle button menu and use it to interact with

the user.

expandRightMenu

Ask the semantic object for the right button menu and use it to interact with

the user.

expandMenu: menu

Start up the menu to interact with the user.

B.2.8 Interrupt handling

The methods in this protocol handle the Control-E command, which is discussed in

Section 5.2.

processInterrupt

Put the mode in the editable state.

shouldProcessInterrupt

This is the key to the Control-E mechanism. If this method returns false, the

mechanism is switched o�. This is useful when productizing an interface. If true

is returned, the user can do multiple Control-E's and get to see the implemen-

tation of how the modes for the interrupt mechanism is implemented. This is

dangerous and is only useful for MoDE kernel designer and maintainer. The de-

fault behavior implemented here is to allow only one Control-E in any sequence

(by returning true only for the �rst time). This allows the user to investigate

the interface and from there, go to the application without the chance of mis-

takingly getting into a strange state where he is viewing the implementation of

the Control-E handling mechanism.

B.2.9 copying

deepCopy

Check self against the OccurrenceDictionary to avoid loops when making du-

plicates. This method is also de�ned in the SemanticObject, Mode, and MDis-

playObject classes.

111



dragDeHighlightOnTop

Dehighlight when an object is dragged and left the mode. Put the mode back

to the level before the highlight.

dragHighlight

Highlight when an object is dragged on top of the mode.

dragHighlightOnTop

Highlight when an object is dragged on top of the mode. Bring the mode to

front (to make it unobscured) when the cursor is in my area.

B.2.6 sharedBehavior-link

Support rubber line feedback.

rubberLineOriginCltn: pts within: aRect

Display a set of rubber lines connecting the cursor and the collection of points

while the user is dragging the cursor. The cursor is restricted within aRect.

Return the �nal cursor position.

rubberLineOriginCltn: pts within: aRect releaseSelectors: releaseSelectors

Display a set of rubber lines connecting the cursor and the collection of points

while the user is dragging the cursor. The cursor is restricted within aRect.

Interaction terminates when an event with selector that matches one of the

\releaseSelectors" is received. Return the �nal cursor position.

rubberLineOriginCltn: pts within: aRect releaseSelectors: rSels gridPoint: gpt

Display a set of rubber lines connecting the cursor and the collection of points

while the user is dragging the cursor. The cursor is restricted within aRect.

Interaction terminates when an event with selector that matches one of the

\releaseSelectors" is received. Return the �nal cursor position. The cursor can

only land on positions de�ned by gridPoint.

B.2.7 sharedBehavior-menu

Process the menu interaction. Assuming the semantic object would provide the menu.

110



moveFrameConstrained

Let the user move the mode with an indication box. The range of move is

con�ned within the mode's supermode.

moveFrameWithin: aRect

Let the user move the mode with an indication box. The range of move is

con�ned within aRect.

moveFrameWithin: aRect linkTo: points

Let the user move the mode with an indication box. The range of move is

con�ned within aRect. Draw links originated from a set of points to the moved

box.

moveImage

Let the user move the mode with a bitmap showing the image of the mode as

opposed to moveFrame which uses a rubber band box to show the position of

the mode.

moveImageConstrained

Let the user move the mode with its image. The range of move is con�ned

within the mode's supermode.

moveImageWithin: aRect

Let the user move the mode with its image. The range of move is con�ned

within aRect.

moveImageWithin: aRect linkTo: points

Let the user move the mode with its image. The range of move is con�ned

within aRect. Draw links originated from a set of points to the moved box.

B.2.5 sharedBehavior-indicating

Methods in this protocol support highlight of the mode.

highlight

Highlight the mode.

deHighlight

Dehighlight the mode.

dragDeHighlight

Dehighlight when an object is dragged and left the mode.

109



bottomRightMoved

Interact with the user to resize the mode by matching the bottom right of the

mode with the cursor position.

leftCenterMoved

Interact with the user to resize the mode by matching the left center of the

mode with the cursor position.

resize: aSymbol outline: aBlock

Resize the mode according to aSymbol (which can be either bottomCenter, bot-

tomLeft, bottomRight, leftCenter, rightCenter, topCenter, topLeft, or topRight).

\aBlock" computes the outline box during the resize action.

resize: aSymbol outline: aBlock width: aWidth halftone: aMask

Resize the mode according to aSymbol. \aBlock" computes the outline box

during the resize action. "aWidth" is the width of the outline and aMask

de�nes the color of the outline.

rightCenterMoved

Interact with the user to resize the mode by matching the right center of the

mode with the cursor position.

topCenterMoved

Interact with the user to resize the mode by matching the top center of the

mode with the cursor position.

topLeftMoved

Interact with the user to resize the mode by matching the top left of the mode

with the cursor position.

topRightMoved

Interact with the user to resize the mode by matching the top right of the mode

with the cursor position.

B.2.4 sharedBehavior-move

Methods in this protocol support the moving of modes.

moveClippedImage

Let the user move the mode with its image. Clip to the display box of the

mode's supermode.

moveFrame

Let the user move the mode with an indication box.

108



eventResponses

Return the event responses dictionary.

eventResponses: newER

Set the event responses dictionary to newER.

semanticObject

Return the semantic object.

semanticObject: aSemObj

Set the semantic object to aSemObj.

B.2.2 event handling

Methods in this protocol process the events.

checkSpecialEvent

Check whether a Control-E is received. This is to handle the user interrupt.

defaultReturnValue

This value distinguishes between an opaque controller which blocks all modes

underneath it from receiving any events (by returning true as default) and a

transparent controller which allows the events that are not processed to go

through (by returning false as default).

processEvent: anEvent

Process the event. Return true when the event is processed. Otherwise, return

false.

B.2.3 sharedBehavior-resize

Method in this protocol de�nes the shared resize behavior.

bottomCenterMoved

Interact with the user to resize the mode by matching the bottom center of the

mode with the cursor position.

bottomLeftMoved

Interact with the user to resize the mode by matching the bottom left of the

mode with the cursor position.

107



instanceVariables:

� semObj { The semantic object.

� mode { The mode.

� event { The current event.

� eventResponses { The eventResponses dictionary stores the interested event

types and the responses to them.

classVariables:

� MMSController1ERD { The default event responses dictionary.

Although the MController class has the name \Controller," it is not a subclass

of the Smalltalk Controller class. In fact, the two classes bear little resemblance.

The MController performs interactions by sending out messages according to

the type of events it receives. The instance variable \eventResponses" of this class

holds a dictionary that stores the mapping between interested event types and mes-

sages. The keys of the dictionary are the event types and the values are message

selectors.

TheMController class and its subclasses implement a set of shared behaviors as

instance methods. They include common behaviors such as menu invocation, rubber-

band lines and boxes, mode dragging, mode highlighting, and mode resizing. These

behaviors are shared because any instance of the class or the subclass can invoke

them. To invoke a shared behavior, one places its method name into the controller's

\eventResponses" dictionary as a value.

In the eventResponses dictionary there are two types of selectors:

� Selectors that end with a colon imply that the message should be sent to the

semantic object with the current event as the argument.

� Selectors that do not end with a colon have no argument, and they should be

sent to the controller itself.

B.2.1 access

event

Return the current event.

106



B.1.21 semObj access

semanticObject

Return the semantic object.

semanticObject: aSemObj

Set the semantic object to aSemObj.

B.1.22 copying

deepCopy

Check self against the OccurrenceDictionary to avoid loops when making du-

plicates. This method is also de�ned in the SemanticObject, MController, and

MDisplayObject classes.

duplicate

Make a duplicate of self and all objects accessible from self (except the super-

mode).

B.1.23 class methods for: initialization

initialize

Initialize the OccurrenceDictionary.

B.1.24 class methods for: instance creation

extent: extent

Creates a mode with extent set.

origin: origin

Create a mode with origin set.

origin: origin extent: extent

Create a mode with origin and extent set.

B.2 MController Class

superclass: Object

105



B.1.20 sizing

Methods in this protocol handles everything that is relevant to the size and position

of the mode.

edit

This will start an edit session discussed in Section 5.2.

extent

Return the extent of the mode.

extent: extent

Set the extent.

height: h

Set the height to h.

width: w

Set the width of mode to w.

origin

Return the origin of the mode.

origin: origin

Set the origin.

origin: origin extent: extent

Set the origin and the extent of the mode.

resizeStyle

Return the resize constraints.

resizeStyle: aStyle

Set the resize constraints to aStyle.

superModeWindowChangedFrom: oldW to: newW

When the supermode noti�es submodes that it has been resized, this method

is executed by each submode to satisfy its resize constraints.

windowChangedFrom: oldW to: newW

This is used by the mode to inform its submodes that it has been resized.

104



B.1.18 sharedStyle-highlight

The protocol de�nes a few commonly seen highlight styles.

colorBorderHighlight

Highlight by changing the border color.

colorBorderHighlightN

Dehighlight by changing the border color.

inverseHighlight

Highlight by inverting the appearance.

inverseHighlightN

Dehighlight by inverting the appearance.

thickBorderHighlight

Highlight by thickening the border.

thickBorderHighlightN

Dehighlight by reducing the border width.

B.1.19 indicating

Although a special case of changing the appearance, highlight is so common that a

protocol is provided to support it.

highlight

The instance variable 'highlightDispObj' stores two kinds of object. A DispObj

indicates that it is the appearance of the mode when highlighted. A symbol

means that a shared style of highlight (that is accessible to all modes) is used.

Those shared styles are implemented in the this class.

deHighlight

Dehighlight the mode.

highlightDispObj

Return the highlight display object.

highlightDispObj: dObj

Set the highlight display object to dObj.

highlighted

Return a boolean indicating whether the mode is highlighted.

103



borderColor

Return the border color.

borderColor: aColor

Set the border color to aColor.

borderWidth

Return the border width.

borderWidth: aWidth

Set the border width to aWidth.

insideColor

Return the background color.

insideColor: aColor

Set the background color to aColor. Changing the background color from nil

(transparent) to something else makes the transparent window opaque. In that

case, the layering must be recomputed.

B.1.17 bu�ering

The methods in this protocol bu�er the appearance of a mode to improve the drawing

speed.

image

Returns a form that stores the appearance of me and my submodes.

imageSize: ext

Return a form of size ext that stores the appearance of the mode.

imageSize: ext window: aWindow

Return a form of size ext that stores the appearance of the mode visible from

aWindow. When ext is nil, current unclippedDispBox extent is used as a default.

When aWindow is nil, current window is used.

absoluteBu�erSubmodes

Ask each submode to bu�er its appearance.

smartBu�erSubmodes

Ask each submode to bu�er its appearance if it has contents that take time to

draw (e.g. curved lines).

102



addSubMode: aMode absAt: aPoint

Add aMode as my front-most submode at aPoint in screen coordinates.

addSubMode: aMode absAt: aPoint extent: ext

Add aMode as my front-most submode at aPoint in screen coordinates and

resize it to have the extent ext.

addSubMode: aMode at: aPoint

Add aMode as my front-most submode at aPoint in local coordinates.

addSubMode: aMode at: aPoint extent: ext

Add aMode as my front-most submode at aPoint in local coordinates and resize

it to have the extent ext.

addToBackSubMode: aMode

Add aMode to be the back-most subMode of self.

addToBackSubMode: aMode at: aPoint

Add aMode as my back-most submode at aPoint in local coordinates.

addToBackSubMode: aMode at: aPoint extent: ext

Add aMode as my back-most submode at aPoint in local coordinates and resize

it to have the extent ext.

addToBackSubMode: aMode window: aWindow viewport: aViewport

Add aMode as my back-most submode and set its window to aWindow and its

viewport to aViewport.

removeFromSuperMode

Remove self from supermode.

removeSubMode: aMode

Remove aMode from the submode collection.

B.1.15 visibility

isVisible

Return a boolean indicating whether the mode is visible.

B.1.16 bordering

Override the methods in View class so that the display object has control of the

border.

101



processEvent: event

Take the event and ask the controller to process it.

B.1.13 enter/leaveEvent-process

The methods in this protocol implement the enter/leave event generation algorithm.

Basically simulate the X Window System's enter/leave window protocol.

commonAncestor

This will return the ancestor that contains both the current cursor point and

the previous cursor point. This is optimized by using the following two facts.

First, since the cursorMove event got here, all the ancestors of the mode contain

the origin of the event. Second, the ancestor mode that contains the previous

point must have the instance variable 'cursorIn' set to true.

cursorIn

Return whether the cursor is inside the mode.

processEnterLeave: event

Check to see if the mode need to generate enter/leave mode events and process

them. The event is a cursorMove event.

processEnter: enterEvent

Ask all the modes, start from self, entered by the cursor to process enterMode

event.

processLeave: leaveEvent

Ask all the modes left by the cursor, starting from self, to process leaveMode

event.

topSubModeEnteredFrom: o�spring

This is an optimization making use of the fact that the submode sought is also

an ancestor mode of the o�spring.

topSubModeLeft

This will return the �rst submode that the cursor left. This submode should

has the cursorIn instance variable set to true.

B.1.14 subMode insert/delete

addSubMode: aMode

Add aMode as my front-most submode.

100



B.1.10 display box access

displayBox

The de�nition of displayBox is identical to that in MVC framework. This

method is overridden because MoDE has a di�erent de�nition of insetDisplay-

Box. As a consequence, the displayBox computed here needs to be clipped with

the insetDisplayBox of the supermode.

insetDisplayBox

Return the inset display box.

recomputeDisplayBox

This is for the mode to adjust its display box when things change. Used by the

\highlight" methods de�ned in Mode.

setUnclippedDisplayBox: box

Set the unclipped displayBox to box.

setUnclippedDisplayBoxExtent: ext

Set the extent of the unclipped displayBox to ext.

setUnclippedDisplayBoxOrigin: aPoint

Set the origin of the unclipped displayBox to aPoint. This is for moving the

mode in absolute coordinates.

unclippedDisplayBox

Returns an displayBox that is not clipped by the displayBox of the supermode.

B.1.11 controller access

controller: aController

Set the controller to aController.

semanticObject: aSemObj controller: aController

Set the semantic object to aSemObj and the controller to aController.

B.1.12 event handling

This is part of the event dispatching mechanism.

interestedIn: event

Decides whether the mode should process an event.

99



toBack

Make the mode the back-most submode of its supermode and display it.

toFront

Make the mode the front-most submode of its supermode and display it.

B.1.8 layering

The methods in this protocol implement the clipping algorithm.

computeLayering

This is a recursive method to update the obscuringRects when the screen layout

is changed.

computeLayering: aRectCltn withIn: aRect

Take a collection of displayBoxes that may obscure self to compute the obscur-

ingRects. This method is recursive.

computeSubLayering

Compute the layering of submodes.

computeSubLayeringBelow: aSubmode

Tell the submodes that are behind aSubmode to compute their obscuringRects.

When a submode moves, only submodes that lie underneath it need to recom-

pute their obscuringRects.

computeSubLayeringBelow: aSubmode withIn: aRect

Tell the submodes that are behind aSubmode and within aRect to compute

their obscuringRects.

computeSubLayeringWithIn: aRect

Compute the layering of submodes that fall with in aRect.

obscuringRects

Return the collection of rectangles that obscure self.

B.1.9 initialize-release

initialize

Initialize the mode.

release

Inform the semantic object to do the �nal clean up.

98



B.1.6 superMode access

isTopMode

Return a boolean indicating whether the receiver is the root of the mode hier-

archy.

superMode

Return the supermode.

topMode

Return the root of the hierarchy of modes that the receiver belongs.

B.1.7 layer manipulation

The methods in this protocol enable and disable a mode and allow a mode to be

moved in the hierarchy.

map

Make the receiver active.

unMap

Make a mode inactive.

eraseAndUnMap

Erase and unmap the mode.

mapAndDisplay

Make the receiver active and display it.

moveBy: aPoint

Move the origin of mode by aPoint.

moveRelativeTo: aPoint

Move the origin of self to the point aPoint in supermode's coordinates.

moveTo: aPoint

Move the origin of self to the absolute point aPoint.

moveToBack

Make the mode the back-most submode of its supermode.

moveToFront

Make the mode the front-most submode of its supermode.

97



recoverFromDrag: aSymbol

Switch back to the normal controller.

B.1.4 scroll support

contentsBoundingBox

Return a rectangle that bounds all the submodes.

B.1.5 subMode access

subModeContaining: aPoint

Return the front-most direct submode that contains aPoint.

�rstModeAt: aPoint

Return the front-most submode that contains aPoint. This is di�erent than the

\subModeContaining:" method in that it searches the whole mode hierarchy

rooted by the receiver.

�rstModeAt: aPoint suchThat: aBlock

Return the front-most submode that contains aPoint and satis�es the conditions

de�ned in aBlock.

�rstModeAt: aPoint suchThat: aBlock cutO�: aCltnOfMode

Return the front-most submode that contains aPoint and satis�es the conditions

de�ned in aBlock. \aCltnOfMode" provides the root of the subtrees that should

not be searched.

�rstModeCovering: aRect

The top submode whose displayBox contains aRect.

�rstModeCovering: aRect suchThat: aBlock

The top subMode with the displayBox contains aRect and satis�es aBlock.

�rstSubMode

Return the front-most submode.

lastSubMode

Return the back-most submode.

subModes

Return an OrderedCollection of all the submodes.

96



displayBackgroundOn: aMedium in: aRect

Display the background of the mode bounded by aRect on aMedium (can be

the screen or a form).

displayBorder

This is a method used for highlighting the mode. Use with care. A line on top

of the mode can be erased by the border.

displayIn: aRect

Display the mode on the screen. The output is clipped to aRect.

displayOn: aMedium in: aRect

Display the mode on aMedium. The output is clipped to aRect.

displaySubmodesIn: aRect

Display all the submodes of the receiver on the screen. Output is clipped to

aRect.

displaySubmodesOn: aMedium in: aRect

Display all the submodes of the receiver on aMedium. Output is clipped to

aRect.

erase

Erase the mode. The mode is not remove from the hierarchy.

B.1.3 drag support

When a mode is dragged, all other modes on screen change their controllers to provide

the semantic feedback. See Section 4.3 for more details on how dragging is handled

in MoDE. \aSymbol" is a Smalltalk symbol that indicate the characteristics of the

dragging. Modes can switch to di�erent controllers according the \aSymbol" they

receive.

afterDrag: aSymbol

This is sent right after the drag �nishes to notify other modes to give them a

chance to switch back to their normal controllers.

beforeDrag: aSymbol

This is sent right before the drag starts. Modes should set up the controller for

the dragging and propagate the message down mode hierarchy.

prepareForDrag: aSymbol

Switch the controller according to aSymbol.

95



A major responsibility of Mode is to handle event dispatching. Two methods

provide this functionality. The \interestedIn:" method takes an event as an argument

and returns true when theMode is active (mapped) and the event happened in the area

controlled by the Mode. False is returned otherwise. The \processEvent:" method

asks the controller to process the event when \interestedIn:" returns true.

Mode implements the functions of a window. Each instance of Mode can be

\mapped" or \unmapped." When a Mode is mapped, it can interact with the user

by receiving the input events and responding to them. An unmapped Mode does not

receive any event, and therefore can not interact with the user. Each Mode has its

own local coordinate system and a transformation (both translation and scaling) that

maps between the local coordinates and the screen coordinates.

A Mode displays itself by �rst asking its display object to display its back-

ground and then asking all contained submodes to display themselves. The built-in

clipping algorithm draws only the portions of the mode that are unobscured.

B.1.1 displayObject

displayObject

Return the display object.

displayObject: aDispObj

Set the display object to aDispObj.

resizeToFitDisplayObject

Change the size of the mode to expose all contents in the display object.

resizeToFitDisplayObjectBy: delta

Change the size of the mode to expose all contents in the display object with a

margin of delta. \delta" can be an integer, a point (specifying the x and the y

o�set), or a rectangle (specifying the o�set for the origin and the corner).

B.1.2 displaying

display

Display the mode on the screen. This includes its background and submodes.

displayBackgroundIn: aRect

Display the background of the mode bounded by aRect.

94



SemanticObject

1. access

2. initialize-release

3. mode attaching

4. drag support

5. MMS-initializations

6. copying

7. connection model support

8. attribute editor

9. (class protocol) instance creation

B.1 Mode Class

superclass: View

instanceVariables:

� cursorIn { A boolean indicating whether the cursor is in the mode.

� obscuringRects { A collection of rectangles corresponding to the portion

of mode obscured by other modes.

� visible { A boolean indicating whether the mode is visible.

� dispObj { The display object.

� highlightDispObj { The display object used when highlighting the mode.

� resizeStyle { A dictionary storing the constraints that control the size and

position of mode when its environment is resized.

� highlighted { A boolean indicating whether the mode is highlighted.

� savedStates { An object that stores the normal states when the mode is in

a drag-state.

93



6. sharedBehavior-link

7. sharedBehavior-menu

8. Interrupt handling

9. copying

10. (class protocol) instance creation

11. (class protocol) access

12. (class protocol) initialize

MDisplayObject

1. transforming

2. initialize-release

3. accessing

4. inversion

5. displaying

6. bu�ering

7. testing

8. display box access

9. copying

10. (class protocol) instance creation

92



6. superMode access

7. layer manipulation

8. layering

9. initialize-release

10. display box access

11. controller access

12. event handling

13. enter/leaveEvent-process

14. subMode insert/delete

15. visibility

16. bordering

17. bu�ering

18. sharedStyle-highlight

19. indicating

20. sizing

21. semObj access

22. copying

23. (class protocol) initialization

24. (class protocol) instance creation

MController

1. access

2. event handling

3. sharedBehavior-resize

4. sharedBehavior-move

5. sharedBehavior-indicating

91



Appendix B

Description of the Kernel Classes

This appendix provides a more detail description of the four kernel classes of the

Mode framework. For each class, the following information is provided:

� Class de�nition. (This includes class name, super class, instance variables, and

class variables.)

� Comments on the class.

� All public methods of the class. (Private methods for internal implementation

are not listed.)

The Mode class has 122 public methods grouped in 24 protocols. The MCon-

troller class has 48 public methods grouped in 12 protocols. The MDisplayObject

class has 25 public methods grouped in 10 protocols. The SemanticObject class has

25 public methods grouped in 9 protocols. The following is a list of the classes and

their protocols.

Mode

1. displayObject

2. displaying

3. drag support

4. scroll support

5. subMode access

90



event generation before it enters the merged loop, and disables the event generation

after it leaves the loop.

The merged loop is suspended when there is no event in the queue. This im-

proves the performance of other processes since no CPU cycles are wasted in unneeded

polling in the ham. The merged loop also transfers control properly. When the user

switches to another application (often by moving the cursor onto that application),

there are always events generated by the user's action to wake up the merged loop

and, then, for it to return the control to its parent (the P). The parent can, then,

assign control to the newly selected application.

One can also insert code into the merged loop to ensure the event-driven ap-

plication conforms to the windowing behavior of the underlying polling environment.

For example, the Smalltalk interface (a P) uses the blue button (the right mouse

button) for window control (e.g., resize, move, collapse). The inserted statements in

the merged loop, as shown in Figure A.2, can check the status of the blue button

and activate the ScheduledBlueButtonMenu when the button is pressed. The user

can, then, manipulate the window of the event-driven application just as if it were a

Smalltalk StandardSystemView.

A.5 Discussion

The event-driven MVC framework described above not only allows e�cient user inter-

faces to be built, but also provides necessary compatibility with the polling interfaces.

Test interfaces built on top of it show better background process performance and

cleaner program structure. Although no formal measurement has been done, the

test interfaces can conserve over 30% of the CPU time for the background processes

under the worst case (when the user is dragging a Mode clipped against the Modes

surrounding it). All of them are as responsive, if not more so, than those built with

the polling mechanism. The \Sandwiching" technique has been successfully applied

to create interfaces that mix Smalltalk user interface objects (text editor, debugger,

menu, binary choice, etc.) with event-driven interface objects.

89



process blue button

merged loop

E

loop
event fatching

H

P

While cond. is true

Parent loop

other loops

other loops

Parent loop

Ham’s loop

While cond. is true

P

H

getNextEvent

getNextEvent

Figure A.2: Loop merging

88



the display (so that nobody obscures them) and passes control to P. When control is

returned, it resumes event generation.

The choice of making Mode a subclass of View shows another bene�t besides

reusing code. It makes the ham easy to use. Since the ham inherits the behavior

of View, P can treat it as an ordinary polling View, and E can treat it as an event-

drivenMode. To construct the sandwich, one simply creates a ham, attaches to it the

polling application as its only subView, and then attaches the ham to the underlying

event-driven environment. No modi�cation of either P or E is required.

A.4.5 How to Switch: Case PHE

There are two types of E, self-contained event-driven applications with their own

event-fetching loops (with RootModes) and those that are without an event-fetching

loop. For both types, the ham must provide the event-fetching loop. It may not

be obvious why an event-fetching loop is needed for self-contained applications that

already have one. The reason comes from an important distinction between event-

driven and polling applications. While a polling application returns control to its

parent when the condition for looping is not satis�ed, an event-driven application

does not. The only time an event-driven application breaks its event-fetching loop and

returns is when it terminates. A simple-minded ham that would activate the event

generation, pass control to the event-fetching loop of the event-driven application,

and wait for it to return would not work because control will not come back until the

event-driven application terminates.

Certainly, one can modify the event-driven application so that it returns con-

trol under certain condition (for example, a LeaveMode event is received), but this

breaks the promise of no modi�cation. Another alternative is to let the ham and the

application run as two processes and have the ham suspend and resume the applica-

tion process. This also is unsatisfactory since it introduces both the complexity of

inter-process communication and the performance loss due to the looping nature of

the ham process.

A technique called \loop merging" is employed. The event-fetching loop in

the application is merged with the polling loop in the ham, as shown in Figure A.2.

This is done by copying the code in the event-fetching loop and inserting it into the

ham polling loop. The merged loop, then, serves as the event-fetching loop. The

real event-fetching loop of the application is never executed. The merged loop in the

ham checks the device state changes interesting to the ham (for example, to see if the

cursor is still there), fetches an event from the event queue, and asks the application to

process the event (by sending the event to the \topMode" of E). The ham enables the

87



E

HamP

A polling Application

An event-driven environment

Figure A.1: An EHP sandwich.

A.4.2 When to Switch

For reasons of performance and preventing interference, one must avoid having two

mechanisms running at the same time whenever possible. This precludes the use

of a single mechanism as the master mechanism which determines when to switch

to a slave mechanism. The only choice left is to have the environment mechanism

determine the switches.

A.4.3 Sandwiching

A technique, called \Sandwiching," inserts an invisible layer between a pair of objects

built with di�erent mechanisms; it provides solutions to both the EP and PE cases.

After the invisible layer (named ham) is included in the representation, the structure

becomes EHP or PHE. Figure A.1 shows an EHP sandwich. The purpose of the ham

is to make the environment object feel as if the contained object were built with the

same mechanism as it is and vice versa. If the ham is well designed, no modi�cation

to either environment or contained objects is necessary in order to have both running

together. Therefore, the problem of how to switch reduces to the problem of designing

the ham.

A.4.4 How to Switch: Case EHP

The ham for this case is a Mode with a special event handler (controller) which

suspends event generation and ushes the event queue when certain conditions (for

example, an EnterMode event is received) indicate that the polling application P

should be in action. The ham then brings itself, and therefore the P, to the front of

86



event. (The \submodes" are stored in the instance variable subViews inherited from

View.) If none of the submodes are interested in the event, it then tries to process the

event itself. If it is not interested in the event, it returns the event as un-processed

to its \superMode" (stored in the instance variable superView, also inherited from

View). A Mode delegates responsibility for processing events to its event handler,

which is stored in the instance variable controller, de�ned by the MVC paradigm.

The one Mode in the hierarchy that has no superMode is called the \root-

Mode." It is an instance of RootMode class where the event-fetching loop is de�ned.

A typical application would have a single RootMode and a hierarchy of Modes. To

allow multiple active applications, a built-in mechanism is provided in RootMode to

guarantee that no two RootModes will attempt to access the event queue at the same

time.

A.4 Compatibility

The problem of compatibility comes from having two active mechanisms (event-driven

and polling) present at the same time. This can be viewed as a control switching

problem. At any given time, one would like to make sure that the mechanism in

control corresponds to the type of object that the user is interacting with and that

there is no interference from the other mechanism. Knowing when and how to switch

between the two mechanisms is the key to achieving compatibility.

A.4.1 De�nition of the Problem

The problem can be described precisely. Let the letter P denotes an object built with

the polling mechanism, and the letter E denote an object built with the event-driven

mechanism. The string PE represents the situation of an event-driven object running

under an environment that is controlled by a polling object. The string PEP would

describe a polling interface object running under an event-driven environment which

in turn is running under another polling environment. The spread-sheet example

used in the Introduction section is modeled by this string. A string of PPEPEEPE

represents a highly nested interface with event-driven and polling objects inter-mixed.

Although the compatibility problem may look complicated at �rst glance, it is

regular. Notice that if the sub-problems PP, EE, PE, and EP can be solved, all of the

more complicated problems are merely concatenations of these four basic cases. Since

the �rst two sub-problems are trivial, only the last two need further consideration.

85



A.3.1 Event Generator

An event generator is responsible for generating events and placing them on the event

queue. Beneath the Smalltalk virtual machine, the input devices are handled by an

event-driven (more precisely interrupt-driven) mechanism; consequently, the problem

of creating an event generator is reduced to identifying the place where Smalltalk

changes its state table and inserting code to generate the events. Smalltalk acquires

the primitive input events from the virtual machine by calling the primitiveInputWord

method and updates its state table in the runmethod de�ned in the InputState class.

The event-driven mechanism of MoDE modi�es the run method to have it interpret

the primitive input events into the events used by MoDE.

Currently, the event types generated include: cursorMove, [leftjmiddlejright]

Button [UpjDownjClickjDoubleClick], and keyboardEvents. New event types can be

added by the user.

A.3.2 Event Queue

The implementation of the event queue is straightforward. The Smalltalk SharedQueue

provides most of the function needed by the event queue, including suspending pro-

cesses that try to fetch from an empty queue. The EventQueue, a subclass of

SharedQueue, implements methods to control the queue and to handle queue overow.

A.3.3 Event Dispatching and the MVC framework

The event dispatching mechanism is more subtle and the decisions made here a�ect

compatibility. The goal is not just to produce a mechanism that delivers the events

to the right event handlers, but also to ensure that event-driven interfaces built with

this control mechanism are compatible with polling interfaces.

The \superView-subView" relation in the Smalltalk View class provides the

base for event dispatching. A View in a structured picture can contain other Views

as sub-components. These sub-components are called \subViews." A View can be a

subView of only one View{its \superView." The set of Views in a structured picture

forms a hierarchy. In the Mode framework, all screen objects inherit from a subclass of

View called Mode

2

. When a Mode receives an event, it checks to make sure the event

is intended for it (usually by comparing the coordinates of the event with its display

box) and asks all of its \submodes," starting from the topmost one, to process the

2

Section 4.2.1 discusses Mode in details.

84



sends them to the appropriate event handler. An event has a name or number that

identi�es the nature of the interaction plus several data values that characterize the

interaction.

A typical event-driven interface has a single event-fetching loop. The execution

of the loop is suspended when the event-fetching statement in the loop tries to fetch

from an empty event queue and is resumed when new events arrive.

An event-driven interface program registers a number of event handlers with

the event dispatching mechanism. For each handler, a list of interesting event types is

speci�ed. When an interesting event happens, the dispatching mechanism activates

the corresponding handler to process it.

A.2 Why Event-Driven?

Besides better utilization of the CPU, the event-driven mechanism provides a better

trace of input devices. With the polling mechanism, when a system is heavily loaded,

it can miss a state change (for example, a button click) because the polling loop is

not at the condition statement when the change happened. This problem does not

happen with the event-driven model since all events are bu�ered. An application has

the freedom to discard events when it cannot process them as fast as they come (this

is seldom the case, though); it can also control when the events should be discarded

and which one to discard. This is in contrast to the polling mechanism where state

changes may be overlooked, depending on the system load and the execution timing

of the statements in the polling loop.

The event-driven mechanism also makes possible implementation of some ap-

plications that could not be done within a polling paradigm. For instance, with the

event-driven mechanism described in the next section, the author was able to de-

velop a package that allows users running Smalltalk on di�erent machines to share

visual workspaces. The package is general in that a user can select any event-driven

application and then share both control and the visual display with other users.

A.3 An Event-Driven Mechanism

This section describes the three major components for an event-driven mechanism {

the event generator, the event queue, and the event dispatching mechanism.

83



� interfaces built with the polling mechanism to co-exist with ones that are built

with the event-driven mechanism. (For example, an event-driven directory

browser could co-exist with the standard Smalltalk system browsers.)

� interface objects built with both mechanisms to be reused by each other. (For

example, within a polling environment one could use an event-driven spread-

sheet which in turn uses a polling menu.)

Additionally, no modi�cation of existing code is required and no loss in performance

is obtained.

The next section gives a brief overview of both the polling and event-driven

mechanisms. In Section A.2, further motivation for having an event-driven mechanism

is provided. Section A.3 describes the design and implementation of the event-driven

mechanism. Section A.4 discusses the solution to the compatibility problem.

A.1 Background

Polling

A system that supports the polling mechanism often maintains a globally accessible

table of the states of the devices. In Smalltalk, this table is an instance of InputSensor

and is accessible through a global variable called Sensor. A typical interface object

will have loops that poll the relevant table entries. When a state change is sensed, the

case statement in the loop invokes a routine to process the change. This routine can

change the state of the underlying application, give feedback to the user, or transfer

control to another loop to detect further state changes. For example, a Smalltalk

PopUpMenu is often invoked by a loop that senses mouse button presses. Control

is then passed to the PopUpMenu polling loop which tracks the cursor position and

highlights the proper portion of the menu when the user drags the cursor.

The control structure of a polling interface is implemented by a tree of loops.

Each loop in the tree keeps control while certain conditions are satis�ed (for instance,

the cursor stays within a rectangle area) and polls the children loops to see whether

they want control. A child loop that wants control can grab it when its loop condition

is met and later return control to its parent loop when its looping condition is no longer

satis�ed.

Event-Driven

An event-driven mechanism [NS79] usually consists of three major components: a set

of event generators, an event queue that bu�ers the events in sequence, and an event

dispatching mechanism that removes the events one at a time from the queue and

82



Appendix A

An Event-Driven Mechanism for

MoDE

In the original Smalltalk MVC implementation, user interface objects interact with

the end user by polling the states of the input devices and responding to the state

changes. The polling loops must always be active in order not to miss any actions

performed by the user. When one is developing systems with multiple processes, this

becomes a serious problem. For example, an application with a polling user interface

may fork an agent process to handle the transactions to a remote database and to

manage the local cache. Since the user interface process must keep polling even when

the user is not interacting with the system (for example, the user is waiting for a

transaction to �nish), it consumes the CPU cycles that could have been spent on

the database agent process. Moreover, the existence of the database agent process

could make the interface less responsive. The situation is aggravated if the database

is running on the same machine as the user interface.

This deterioration of performance can be avoided if the user interface is built

on top of an event-driven mechanism that does not poll

1

. However, one must be

cautious in making such a fundamental change. While switching to an event-driven

mechanism is bene�cial, it is impractical to consider discarding existing user interfaces

and rebuilding them under a new mechanism. Since reusability is among the most im-

portant features of object-oriented programming, if the new event-driven mechanism

does not allow reuse of existing interfaces, it would be impractical.

This section presents an event-driven interface framework that not only solves

the performance problem but also allows:

1

An alternative is to implement a Time-Sharing Citizenry [Sch88a] mechanism within the

Smalltalk itself.

81



[Was85] A. I. Wasserman. Extending transition diagrams for the speci�cation of

human-computer interaction. IEEE Transactions on Software Engineer-

ing, August 1985.

[WCM88] A. Weinand, E. Camma, and R. Marty. ET++: An Object-Oriented

Application Framework in C++. In OOPSLA'88: Object Oriented Pro-

gramming, Systems and Applications, pages 45{57, September 1988.

[Wel89] Pierre D. Wellner. Statemaster: A UIMS based on Statecharts for Pro-

totyping and Target Implementation. In SIGCHI'89: Human Factors in

Computing Systems, pages 177{182, May 1989.

[WR82] P. C. S. Wong and E. R. Reid. FLAIR{User interface dialog design tool.

Computer Graphics: SIGGRAPH'82, 16(3):591{606, July 1982.

[YH85] T. Yunten and H. R. Hartson. A SUPERvisory Methodology and No-

tation (SUPERMAN) for human-computer system development , vol-

ume 1, pages 243{281. Ablex, Norwood, N.J., 1985.

80



[SIKV82] D. C. Smith, C. Irby, R. Kimball, and B. Verplank. Designing the Star

User Interface. Byte, pages 242{282, April 1982.

[SM88] P. A. Szekely and B. A. Myers. A User Interface Toolkit Based on

Graphical Objects and Constraints. In OOPSLA'88: Object Oriented

Programming, Systems and Applications, pages 36{45, September 1988.

[Sme87] SmethersBarnes, P.O. Box 639, Portland, Ore. 97207. SmethersBarnes

Prototyper User's Manual, 1987.

[Smi88] David N. Smith. Building Interfaces Interactively. In UIST '88: ACM

SIGGRAPH Symposium on User Interface Software, pages 144{151, Oc-

tober 1988.

[Ste88] Stepstone corp., Sandy Hook, Ct. ICpak 201 Reference Manual, 1988.

[Sun86] Sun Microsystems, Mountain View, Calif. SunView Programmer's

Guide, 1986.

[Sun87] Sun Microsystems, Mountain View, Calif. NeWS Manual, 1987.

[Sze89] Pedro Szekely. Standardizing the Interface Between Applications and

UIMSs. UIST '89: ACM SIGGRAPH Symposium on User Interface

Software, pages 34{42, November 1989.

[TaMSW86] P. Tanner, S. a. MacKay, D. A. Stewart, and M. Wein. A multitask-

ing switchboard approach to user interface management. In Computer

Graphics: SIGGRAPH '86, pages 241{248, July 1986.

[tD85] P. J. W. ten Hagen and J. Derksen. Parallel Input and Feedback in Dia-

logue Cells. In G. E. Pfa�, editor, User Interface Management Systems,

pages 109{124. Spring-Verlag, Berlin, April 1985.

[Tei86] W. Teitelman. Ten years of window systems-A retrospective view. In

F. R. A. Hopgood, D. Duce, V. C. Fielding, K. Robinson, and A. S.

Williams, editors, Methodology of Window Management, pages 35{46.

Springer-Verlag, New York, 1986.

[Tes81] L. Tesler. The Smalltalk Environment. Byte, pages 90{147, August

1981.

[vdM89] Pieter S. van der Meulen. Development of an Interactive Simulator in

Smalltalk. JOOP, pages 28{51, January/February 1989.

[VL89] John M. Vlissides and Mark A. Linton. Unidraw: A Framework for

Building Domain-Speci�c Graphical Editors. UIST '89: ACM SIG-

GRAPH Symposium on User Interface Software, pages 158{167, Novem-

ber 1989.

79



[SBK85] J. Sibert, R. Belliardi, and A. Kamran. Some thoughts on the interface

between user interface management systems and application software. In

G. E. Pfa�, editor, User Interface Management Systems, pages 183{192.

Springer-Verlag, Berlin, 1985.

[Sch86a] Kurt Schmucker. MacApp: An Application Framework. Byte, pages

189{193, August 1986.

[Sch86b] Kurt Schmucker. Object Oriented Programming on the Macintosh, vol-

ume 5. Apple Press, 1986.

[Sch88a] Allan M. Schi�man. Time-Sharing Citizenry for Smalltalk-80 under

Unix. ParcPlace Newsletter, 1(2):9{10, 1988.

[Sch88b] Kurt Schmucker. Using Objects to Package User Interface Functionality.

Journal of Object-Oriented Programming, 1(1):40{45, April/May 1988.

[SG86] R. W. Scheier and J. Gettys. The X Window System. ACM Transac-

tions on Graphics, 5(2):79{109, April 1986.

[SG89] Gurminder Singh and Mark Green. A high-level user interface manage-

ment system. In SIGCHI'89: Human Factors in Computing Systems,

pages 133{138, May 1989.

[SH89] Antonio C. Siochi and H. Rex Hartson. Task-Oriented Representation

of Asynchronous User Interfaces. In SIGCHI'89: Human Factors in

Computing Systems, pages 183{188, May 1989.

[Sha89] Yen-Ping Shan. An Event-Driven Model-View-Controller Framework for

Smalltalk. In OOPSLA'89: Object Oriented Programming, Systems and

Applications, pages 347{352, October 1989.

[Sha90a] Yen-Ping Shan. An Object-Oriented Framework for Direct-Manipulation

User Interfaces. In Advances in Object-Oriented Graphics, Eurographic-

Seminars Series. Springer-Verlag, 1990.

[Sha90b] Yen-Ping Shan. Mode o�ers direct manipulation for Smalltalk. IEEE

Software, 7(3):36, May 1990.

[SHB86] J. L. Sibert, W. D. Hurley, and T. W. Bleser. An Object-Oriented User-

Interface Management System. Computer Graphics: SIGGRAPH'86,

20(4):259{268, August 1986.

[Shn83] B. Shneiderman. Direct manipulation: a step beyond programming lan-

guages. IEEE Computer, 16(8):57{69, 1983.

78



[NS79] W. M. Newman and R. F. Sproull. Principles of Interactive Computer

Graphics. McGraw-Hill, Inc., 1979.

[OBE

+

84] D. R. Olsen, W. Buxton, R. Ehrich, D. Kasik, J. Rhyne, and J. Sibert.

A Context for User Interface Management. IEEE Computer Graphics

and Applications, 4(12):33{42, December 1984.

[OD83] D. R. Olsen and E. P. Dempsey. Syngraph: A Graphical User-Interface

Generator. Computer Graphics: SIGGRAPH'83, pages 43{50, July

1983.

[ODR85] D. R. Olsen, E. P. Dempsey, and R. Rogge. Input-Output Linkage in

a User Interface Management System. In Computer Graphics: SIG-

GRAPH'85, pages 225{234, July 1985.

[Ols86] D. R. Jr. Olsen. MIKE: The Menu Interaction Kontrol Environment.

ACM Transactions on Graphics, 5(4):318{344, October 1986.

[Ols87] D. R. Olsen. Larger Issues in User Interface Management. In ACM SIG-

GRAPH Workshop on Software Tools for User Interface Development,

pages 134{137, April 1987.

[Ols88] Dan R. Jr. Olsen. A Browse/Edit Model for User Interface Management.

In Graphics Interface '88, pages 155{159, June 1988.

[Ols89] Dan R. Jr. Olsen. A Programming Language Basis for User Interface.

In SIGCHI'89: Human Factors in Computing Systems, pages 171{176,

May 1989.

[Pfa85] G. E. Pfa�. User Interface Management Systems. Springer-Verlag,

Berlin, 1985.

[Rei87] S. P. Reiss. A Conceptual Programming Environment. In 9th Interna-

tional Conference on Software Engineering, pages 225{235, March 1987.

[RSD

+

87] W. Roberts, M. Slater, K. Drake., A. Simmins, and A. Davison. First

Impressions of NeWS. Technical Report 417, Department of Computer

Science and Statistics, Queen Mary College, University of London, Lon-

don, England, August 1987.

[Rub82] A. Rubel. Graphic based applications{Tools to �ll the software gap.

Digital Design, pages 17{30, July 1982.

[Rum88] James Rumbaugh. State Trees as Structured Finite State Machines for

User Interfaces. In UIST '88: ACM SIGGRAPH Symposium on User

Interface Software, pages 15{29, October 1988.

77



[Mey87] B. Meyer. Reusability: The Case for Object-Oriented Design. IEEE

Software, pages 50{64, March 1987.

[Mic85] Microsoft Corp., Redmond, Wash. Microsoft Windows: Programmer's

Guide, 1985.

[Mil88] J. Miller. UIMSs: Threat or Menace? In SIGCHI'88: Human Factors

in Computing Systems, pages 199{200, April 1988.

[MRKS89] Hans Muller, John Rose, James Kempf, and Tayloe Stansbury. The Use

of Multimethods and Method Combination in a CLOS Based Window

Interface. In OOPSLA'89: Object Oriented Programming, Systems and

Applications, pages 239{253, October 1989.

[MSC

+

86] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S. H.

Rosenthal, and D. F. Smith. Andrew: A distributed personal com-

puting environment. Communications of the Association of Computing

Machinery, 29(3):184{201, March 1986.

[MT88] Je� McA�er and Dave Thomas. Eva: An Event Driven Framework for

Building User Interfaces in Smalltalk. In Graphics Interface '88, pages

168{175, June 1988.

[MVS88] James E. McDonald, Paul D. J. Vandenberg, and Melissa J. Smartt. The

MIRAGE Rapid Interface Prototyping System. In UIST '88: ACM SIG-

GRAPH Symposium on User Interface Software, pages 77{84, October

1988.

[Mye87a] B. A. Myers. Creating dynamic interaction techniques by demonstration.

In SIGCHI'87: Human Factors in Computing Systems, pages 271{278,

April 1987.

[Mye87b] B. A. Myers. Gaining General Acceptance for UIMSs. In ACM SIG-

GRAPH Workshop on Software Tools for User Interface Development,

volume 21, pages 130{134, April 1987.

[Mye88] B. A. Myers. Creating User Interfaces by Demonstration. Academic

Press, Boston, 1988.

[Mye89a] B. A. Myers. User-Interface Tools: Introduction and Survey. IEEE

Software, pages 15{23, January 1989.

[Mye89b] Brad A. Myers. Encapsulating Interactive Behaviors. In SIGCHI'89:

Human Factors in Computing Systems, pages 319{324, May 1989.

[NeX88] NeXT, Inc., Palo Alto, Calif. NeXT System Reference Manual, 1988.

76



[KC88] Michael F. Kleyn and Indranil Chakravarty. EDGE - A Graph Based

Tool for Specifying Interaction. In UIST '88: ACM SIGGRAPH Sym-

posium on User Interface Software, pages 1{14, October 1988.

[KLR89] David J. Kasik, Michelle A. Lund, and HenryW. Ramsey. Reections on

Using a UIMS for Complex Applications. IEEE Software, pages 54{61,

January 1989.

[KO88] Kerry Kimbrough and LaMott Oren. CLUE: A Common Lisp User

Interface Environment. In UIST '88: ACM SIGGRAPH Symposium on

User Interface Software, pages 85{94, October 1988.

[KP83] D. Kieras and P. G. Polson. A generalized transition network repre-

sentation for interactive systems. In SIGCHI'83: Human Factors in

Computing Systems, pages 103{106, December 1983.

[KP88] G. E. Krasner and S. T. Pope. A Cookbook for Using the Model-View-

Controller User Interface Paradigm in Smalltalk-80. Journal of Object-

Oriented Programming, 1(3):26{49, August/September 1988.

[LIBY89] T. G. Lewis, Fred Handloser III, Sharada Bose, and Sherry Yang. Pro-

totypes from Standard User Interface Management System. Communi-

cations of the Association of Computing Machinery, 22(5):51{60, may

1989.

[Lie86] Henry Lieberman. Using Prototypical Objects to Implement Shared Be-

havior in Object Oriented Systems. OOPSLA'86: Object Oriented Pro-

gramming, Systems and Applications, pages 214{223, September 1986.

[LVC89] M. A. Linton, J. M. Vlissides, and P. R. Calder. Composing User Inter-

faces with InterViews. IEEE Computer, pages 8{22, February 1989.

[MA88] Joel McCormack and Paul Asente. An Overview of the X Toolkit. UIST

'88: ACM SIGGRAPH Symposium on User Interface Software, pages

46{55, October 1988.

[MBFB89] John Maloney, Alan Borning, and Bjorn Freeman-Benson. Constraint

Technology for User-Interface Construction in ThingLab II. In OOP-

SLA'89: Object Oriented Programming, Systems and Applications,

pages 381{388, October 1989.

[MBW89] Jerry M. Manheimer, Rodney C. Burnett, and Jo Ann Wallers. A case

study of user interface management system development and applica-

tion. In SIGCHI'89: Human Factors in Computing Systems, pages 127{

132, May 1989.

75



[Hel87] J. Helfman. A Tabular User-Interface Speci�cation System. In

SIGCHI'87: Human Factors in Computing Systems, pages 279{284,

April 1987.

[HH86] D. Hix and H. R. Hartson. An interactive environment for dialogue

development: Its design, use, and evaluation. In SIGCHI'86: Human

Factors in Computing Systems, pages 228{234, April 1986.

[HHN86] E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation

interfaces. In D. A. Norman and S. W. Draper, editors, User Centered

System Design, pages 87{124. Lawrence Erlbaum Associates, Hillsdale,

NJ, 1986.

[Hil86] R. D. Hill. Supporting Concurrency, Communication, and Synchroniza-

tion in Human-Computer Interaction{The Sassafras UIMS. ACM Trans-

actions on Graphics, 5(3):179{210, July 1986.

[HSL85] P. J. Hayes, P. A. Szelely, and R. A. Lerner. Design Alternatives for

User-Interface Management Systems Based on Experience with Cousin.

In SIGCHI'85: Human Factors in Computing Systems, pages 169{175,

April 1985.

[Hud86] S. E. Hudson. A User Interface Management System wich Supports

Direct Manipulation. PhD thesis, Department of Computer Science,

University of Colorado, Boulder, Colorado, 1986.

[IWC

+

88] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken

Doyle. Fabrik-A Visual Programming Environment. In OOPSLA'88:

Object Oriented Programming, Systems and Applications, pages 176{

190, September 1988.

[Jac86] R. J. K. Jacob. A Speci�cation Language for direct Manipulation User

interfaces. ACM Transactions on Graphics, 5(4):283{317, October 1986.

[JGZ88] Ralph E. Johnson, Justin O. Graver, and Lawrence W. Zurawski. TS:

An Optimizing Compiler for Smalltalk. In OOPSLA'88: Object Oriented

Programming, Systems and Applications, pages 18{26, October 1988.

[Kas82] D. J. Kasik. User Interface Management System. Computer Graphics:

SIGGRAPH'82, pages 99{106, July 1982.

[Kas85] David J. Kasik. An architecture for graphics application development.

In Proceedings of IEEE International Conference on Robotics and Au-

tomation, pages 365{371, March 1985.

74



[Fol86] J. D. Foley. Guest Editor's Introduction: Special Issue on User Interface

Software. ACM Transactions on Graphic, 5(2):75{78, April 1986.

[Fol88] J. D. Foley. Software Tools for Designing and Implementing User-

Computer Interfaces. In Lecture notes for User Interface Strategies'88.

University of Maryland, Professional Development Center, College Park,

Maryland, October 1988.

[Fol89] J. D. Foley. De�ning Interfaces at a High Level of Abstraction. IEEE

Software, pages 25{32, January 1989.

[Fre87] K. Freburger. RAPID: Prototyping Control Panel Interfaces. In

OOPSLA'87: Object Oriented Programming, Systems and Applications,

pages 416{422, October 1987.

[GE87] M. Grossman and R. K. Ege. Logical Composition of Object-Oriented

Interfaces. In OOPSLA'87: Object Oriented Programming, Systems and

Applications, pages 295{306, October 1987.

[Gia88] Alessandro Giacalone. XY-WINS An Integrated Environment for De-

veloping Graphical User Interfaces. In UIST '88: ACM SIGGRAPH

Symposium on User Interface Software, pages 129{143, October 1988.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: the Language and Its Imple-

mentation. Addison-Wesley, 1983.

[Gra86] F. E. Granor. User Interface Management Systems Generator. PhD

thesis, Department of Computer and Information Science, University of

Pennsylvania, Philadelphia, PA, May 1986.

[Gre85] M. Green. The University of Alberta User Interface Management Sys-

tem. In Computer Graphic: SIGGRAPH'85, volume 19, pages 205{213,

July 1985.

[Gre86] M. Green. A Survey of Three Dialogue Models. ACM Transactions on

Graphics, 5(3):244{275, July 1986.

[Gut87] S. H. Gutfreund. ManiplIcons in ThinkerToy. In OOPSLA'87: Ob-

ject Oriented Programming, Systems and Applications, pages 307{317,

October 1987.

[Har89] R. Hartson. User-Interface Management Control and Communication.

IEEE Software, pages 62{70, January 1989.

[HC86] D. A. Jr. Handerson and S. K. Card. Rooms: The Use of Multiple Virtual

Workspaces to Reduce Space Contention in a Window-Based Graphical

User Interface. ACM Transactions on Graphics, 5(3):211{243, July 1986.

73



[Car88] Luca Cardelli. Building User Interfaces by Direct Manipulation. In UIST

'88: ACM SIGGRAPH Symposium on User Interface Software, pages

152{166, October 1988.

[CCM87] L. A. Call, D. L. Cohrs, and B. P. Miller. CLAM{an Open System for

Graphical User Interfaces. In OOPSLA'87: Object Oriented Program-

ming, Systems and Applications, volume 17, pages 227{286, October

1987.

[Con87] J. Conklin. Hypertext: An Introduction and Survey. IEEE Computer,

19:17{41, September 1987.

[Cox86] B. J. Cox. Object-Oriented Programming: An Evolutionary Approach.

Addison Wesley, 1986.

[CP85] L. Cardelli and R. Pike. Squeak: A Language for Communicating with

Mice. In Computer Graphics: SIGGRAPH'85, volume 19, pages 199{

204, July 1985.

[CS87] Brad J. Cox and Kurt J. Schmucker. Producer: A Tool for Translating

Smalltalk-80 to Objective-C. OOPSLA'87: Object Oriented Program-

ming, Systems and Applications, pages 423{429, October 1987.

[DLS89] John F. DeSoi, William M. Lively, and Sallie V. Sheppard. Graphical

speci�cation of user interfaces with behavior abstraction. In SIGCHI'89:

Human Factors in Computing Systems, pages 139{144, May 1989.

[Edm81] E. A. Edmonds. Adaptive man-computer interfaces. In M. J. Coombs

and J. L. Alty, editors, Computing Skills and the User Interface. Aca-

demic Press, London, 1981.

[EL88] Danny Epstein and Wilf R. LaLonde. A Smalltalk Window System

Based On Constraints. In OOPSLA'88: Object Oriented Programming,

Systems and Applications, pages 83{94, September 1988.

[EMB87] Raimund K. Ege, David Maier, and Alan Borning. The Filter Browser

De�ning Interfaces Graphically. In Europian Conference on Object Ori-

ented Programming, pages 155{165, 1987.

[FB87] M. A. Flecchia and R. D. Bergeron. Specifying complex dialogs in AL-

GAE. In SIGCHI'87: Human Factors in Computing Systems, pages

229{234, April 1987.

[FJ87] G. L. Fisher and K. I. Joy. Control-Panel Interface for Graphics and

Image-Processing Applications. In SIGCHI'87: Human Factors in Com-

puting Systems, pages 285{290, April 1987.

72



Bibliography

[ABB89] Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. A Two-

View Approach to Constructing User Interfaces. In Computer Graphics:

SIGGRAPH'89, volume 23, 3, pages 137{146, July 1989.

[Ada88] Sam S. Adams. MetaMethods: The MVC Paradigm. HOOPLA!, 1(4),

July 1988.

[Ale87] J. H. Alexander. Painless Panes for Smalltalk Windows. InOOPSLA'87:

Object Oriented Programming, Systems and Applications, pages 287{

294, October 1987.

[AMY87] R. Akscyn, D. McCracken, and E. Yoder. KMS: A Distributed Hyperme-

dia System for Managing Knowledge in Organizations. In Hypertext'87,

pages 1{20. University of North Carolina, Chapel Hill, NC, November

1987.

[Apo88] Apollo Computer, Inc. Open Dialogue, 1988.

[Atk86] Robert G. Atkinson. Hurricane: An Optimizing Compiler for Smalltalk.

In OOPSLA'86: Object Oriented Programming, Systems and Applica-

tions, pages 151{158, October 1986.

[AYM88] R. Akscyn, E. Yoder, and D. McCracken. The Data Model is the Heart of

Interface Design. In SIGCHI'88: Human Factors in Computing Systems,

pages 115{120, April 1988.

[Bar86] P. S. Barth. An Object-Oriented Approach to Graphical Interfaces.

ACM Transactions on Graphics, 5(2):142{172, April 1986.

[Bin88] Carl Binding. The Architecture of a User Interface Toolkit. In UIST

'88: ACM SIGGRAPH Symposium on User Interface Software, pages

56{65, October 1988.

[BLSS83] W. Buxton, M. R. Lamb, D. Sherman, and K. C. Smith. Towards a Com-

prehensive User Interface Management System. In Computer Graphics:

SIGGRAPH'83, volume 17, pages 35{42, July 1983.

71



pendixes is an example. A set of objects could be added to the library to facilitate

the creation of this kind of user interface. The two-dimensional de�nition of mode

could be extended to cover true three dimensional interaction. In a two-dimensional

interface, a mode is an area on the screen that interacts with the user di�erently than

its surrounding area. In a three-dimensional interface, one could de�ne a mode as

the \volume" (or surface) that interacts with the user di�erently than its surrounding

volume (or surface). Research on 3-D input devices and how to represent and process

the events generated by these devices is also needed.

Tracking Mechanism

With its event-driven mechanism, MoDE could be used to create interfaces that can

record the user's interaction (basically as a sequence of events) into a �le and later

replay the interaction from the �le. This could be used to provide insights into the

usability of the user interfaces created with MoDE.

It would be desirable to build this tracking mechanism at a system level so

that all application would inherit this capability. The development of the tracking

mechanism could also help in creating shared workspaces. If replay is done on a

di�erent machine at the same time when the interaction is being tracked, the tracking

site and the replay site could share the same visual workspace.

Audio Interaction

To support audio interaction the system would need to accept audio input and gener-

ate audio output. Methods to package audio input and output as events would needed

to be developed. Also, the event dispatching mechanism would need to be extended

to include the priority list policy so that the audio input can be independent to the

cursor position. (With a priority list, an event is �rst sent to the mode at the top of

the list, then the second, and so on.)

70



(in C++)

(in C++)
Basic classes Basic classes

X Window SystemSmalltalk

Application code

(in Smalltalk)

Application code

Figure 7.1: Make MoDE a production system.

and window management. The underlying event-driven mechanism of MoDE is very

similar to the event-driven mechanism of X. In fact, since many speci�c functions {

such as clipping, event dispatching, etc. { are handled directly in X, those methods

would not have to be ported. Thus, the size of theMode class in C++ would be much

smaller than the one in Smalltalk.

The MDisplayObject class would be implemented with the display functions of

X. Since the version of Smalltalk (ParcPlace 2.5) in which MoDE is implemented has

been ported to the X Window System (on DEC3100 machines) successfully, the X dis-

play functions are su�cient to implement all display functions of the MDisplayObject

plus additional ones that might be added in the future.

The MController class would be modi�ed to handle X event types. As men-

tioned in Section 4.2.2.1, the eventResponses table would need to be implemented

by associating tags with function pointers. Also, an MEvent class will be needed to

wrap X events with an object-oriented layer to provide an object-oriented interface to

the MController. However, since the event-driven system of MoDE and X are quite

similar, the tasks would be straight forward.

The SemanticObject is independent of the underlying windowing system; con-

sequently, no special treatment is needed for porting it.

After the basic classes have been ported, MoDE could be used to develop

prototype interfaces as an application of the basic classes. Once the interfaces became

satisfactory and fully debugged, the application code can be hand translated into C++

and linked with the basic classes ported to C++ previously. If the target language is

Objective-C instead of C++, a Smalltalk to Objective-C translator, called \Producer"

[CS87], could be invoked from the Mode Composer to automatically translate the

application code to Objective-C.

Support 3-D interaction

With some programming, MoDE could be used to create simple 3-D interfaces. The

3-D game shown at the end of the section 1 of the videotape contained in the ap-

69



such mechanism to allow polling and event-driven user interfaces running together

without any performance loss and without altering them. Appendix A.4 discusses

this in details.

7.2 Future Research

The work reported here can be extended in many ways.

Expand the Type-space of Modes

The type-space of modes de�ned in Section 3.4 can be expanded by creating new

values on the three axes. For example, MoDE currently does not support video on

the appearance axis. De�ning a new subclass of MDisplayObject that displays video

images would allow the type-space to expand and cover more user interfaces.

Direct-Manipulation Support for Dynamic Interfaces

The Mode Composer currently provides little direct-manipulation support for the cre-

ation of dynamic interfaces. A dynamic interface (for example, a drawing tool that

allows the user to create lines and boxes) changes its con�guration at run-time. The

di�culty in creating such interfaces is not in their implementation but rather in their

speci�cation. New input techniques would be needed in order for the interface devel-

oper to specify the dynamic behavior of the interface through direct manipulation.

Make MoDE a Production System

MoDE can be made into a \real" system intended for industrial use. The \real"

MoDE should be able to generate user interfaces that run on the X Window System.

A viable approach would be to implement the basic classes of MoDE in a C-based

object-oriented language (such as C++ or Objective-C) to interact with the X server.

The Mode Composer would have to be modi�ed to generate code that uses the four

basic classes coded in Smalltalk. This would allow interface developers to prototype

and test their interfaces using the Smalltalk Mode Composer. Once they are satis�ed

with the prototype interface, they could then ask the system to generate code in

the production language (for example C++) for the real version of the interface that

would provide better performance and portability.

Figure 7.1 depicts a strategy for porting MoDE to C++ running on top of X

Window System. The basic classes would be reimplemented in C++ to use the X

Window System.

Each instance of Mode would be associated with an X window.

The Mode class would implement calls to the X server for event dispatching

68



Chapter 7

Conclusion

7.1 Summary

The MoDE research contributes to the state of the art of user interface development

by achieving the following goals.

Generality

The orthogonal design of the Mode framework not only allows the user interface

components created with MoDE to be highly reusable but also allows the axes to span

more mode types, which results in a more general system. With an open architecture,

the MoDE interaction technique library allows new styles of interaction to be created

and incorporated into the system easily.

Connection between user interface and application

The decentralized connection model allows a strong separation of the user interface

and the application without limiting the communication between them (which is

essential for providing rich semantic feedback).

Support beyond coding

The mode concept provides an informal framework in which the user interface devel-

oper can specify the interface conceptually from the end user's point of view. This

framework also provides guidelines to help decompose an interface into components

during the design phase. The structure regularity imposed by the Mode framework

across all interfaces and the interrupt-and-inspection capability MoDE supports helps

the developer in both debugging and maintenance.

Integration between event-driven and polling interfaces

To the best of the author's knowledge, the MoDE event-driven mechanism is the �rst

67



� One message sent from the mode to controller to process the event.

� The cost of the controller eventResponses table look-up.

� One message for the controller to inform the semantic object.

� Two messages that go back and forth between the semantic object and the

application.

� One message sent from the semantic object to the mode to reect the semantic

action.

� One message from the mode to its display object to display the di�erence.

The pro�le data collected from a session similar to that shown in section 1 of the

videotape indicates that these overhead events consumed less than 2% of the overall

CPU time. This suggests that further optimization on this portion of the system

could provide very little gain.

Since MoDE is general with respect to object-oriented programming, the sys-

tem can readily be ported to a non-interpreted object-oriented language that can

interact with a faster drawing library. Such a port would eliminate the two major

performance liabilities mentioned above. Section 7.2 outlines a possible approach for

making such a port.

Thus, while interfaces produced by MoDE are measurably slower than inter-

faces implemented using conventional tools, their di�erences are insigni�cant from

the point of view of the user. The MoDE architecture achieves its exibility and gen-

erality at a small, constant overhead cost. Thus, when MoDE is ported to production

platforms, such as Objective-C and X Window System, the interfaces it produces

should be as e�cient as those produced using other user interface building tools.

6.4 Summary

MoDE is su�ciently general to produce a wide variety of interfaces including the

interface styles in SunView, NeXT, Macintosh, and those in the section 1 of the

videotape. The Mode framework is currently limited by the implementation rather

than the concepts that it is based upon, and can be extended to provide further

generality. An informal experiment suggests that MoDE is capable of increasing the

productivity of its users. MoDE also generates interfaces that provide reasonable

performance suitable for actual applications.

66



but its slowness is relative and, in practice, has not detracted from its usefulness.

Several measures of performance will be discussed briey below, but to get the look

and feel of MoDE in actual use, the reader is referred to the videotape in Appendix C.

This videotape was shot in real-time. It demonstrates the e�ciency of the interfaces

built with MoDE. The sample interfaces includes windows that move smoothly with

their actual images instead of indication boxes, a star that rotates when dragged, a

scroll bar that scrolls the contents of a window continuously, and a screen object that

clips against its surrounding environment while tracking the cursor.

On a Sun3/75, moving an icon in a MoDE-generated interface has a 70 to 100

ms gap between the time the user pushes the button and the time the icon starts to

move. If the same operation is programmed with a C++ graphics library that has

direct access to the low level SunView routines, the gap decreases to about 1ms. Al-

though these numbers indicate two orders of magnitude di�erence in performance, the

human user can hardly notice the di�erence. With faster machines, the performance

di�erence becomes even less noticeable.

MoDE has been used to produce functional interfaces for actual applications;

they include the interface for MoDE itself and the interface for a hypertext software

development system currently being built. In most cases, the interfaces created with

MoDE actually ran faster than interfaces created with original Smalltalk tools because

of the caching capability inherited by all modes. For example, the interface for a

hypertext application built with MoDE can refresh a directed graph with 100 nodes

and 150 links 3 to 4 times faster than the same interface implemented directly with

Smalltalk tools.

The major factors a�ecting MoDE's performance are consequences of its im-

plementation in Smalltalk, rather than the architecture of the system. Smalltalk

drawing routines used by MoDE are implemented with non-optimized algorithms.

They run much slower than ordinary drawing routines such as those of SunView

and X. Second, Smalltalk is an interpreted language

2

; Smalltalk programs, includ-

ing MoDE, execute an order of magnitude slower than compiled programs [JGZ88].

The overhead required to achieve the generality of MoDE is not a signi�cant factor.

By partitioning the interface components orthogonally, MoDE incurs only a constant

overhead cost for its generality. This �xed cost is the constant number of additional

messages needed to support the indirection that, in turn, supports the orthogonal

partitioning.

The �xed overhead incurred between the time an event is generated and the

time it is fully processed typically includes the following:

2

There are Smalltalk implementations that are compiled and provide better performance [Atk86,

JGZ88]. Unfortunately their compilers strip away much of the run-time exibility of the interpreted

Smalltalk, which is essential for the implementation of MoDE.

65



After the experiment, subjects in Group A were asked to estimate the amount

of additional time they would need to �nish the assignment. A1 indicated 4 to 8 hours,

minimum, with \proper support." (Another two days would be needed to improve his

tool-set to provide the \proper support.") A2 estimated 4 to 8 hours, additional, for

him to complete the assignment.

6.2.4 Discussion

The design of the experiment was purposely biased against MoDE. Group A could use

whatever tools they chose, but group B could use only MoDE. Group A consisted of

experienced Smalltalk programmers, while group B consisted of inexperienced MoDE

programmers. Furthermore, B1 and B2 had completed only two small assignments

using MoDE prior to the experiment, and they were unfamiliar with the resize func-

tions of MoDE. This is reected in the large proportion of time both spent on the

resizing features of the problem interface. (For example, B1 �nished everything else

in about 15 minutes and spent 40 minutes with the resize features.) The instability

of the version of MoDE used in the experiment also worked against MoDE. It is esti-

mated that B2 spent at least half an hour recovering from two crashes. If subjects in

group B had had more experience with MoDE and the implementation of MoDE had

been more stable, even greater di�erences in performance would have been expected

1

.

The intention of the experiment was to demonstrate informally the productiv-

ity gain provided by MoDE. Since Group A did not �nish the assignment, only the

estimated numbers are available for comparison. Nevertheless, this informal experi-

ment suggests a substantial gain in productivity could be achieved for programmers

with modest experience using a stable MoDE system.

6.3 Performance

Performance is an important consideration for any system. However, it must be

placed in context and considered in relation to other criteria and objectives for a

system. MoDE was built as a proof-of-concept system and, hence, emphasis was

placed on the generality of its architecture. Since MoDE is intended as a prototyping

tool, exibility (in addition to generality) is more important than raw speed.

In the current interpretive implementation, MoDE may be considered \slow,"

1

The author, an expert MoDE user, took 15 minutes to build the running implementation used

as the de�nitive speci�cation in the experiment. Approximately 4 hours were needed by the author

to build the same interface without MoDE.

64



Neither subject in group A completed the assignment in the three hour time

limit for the experiment. They completed some features, partially completed others,

and some were not attempted. The following is a summary of their results.

SUBJECT A1

Title bar: partially completed. (title text not centered; the background under the

window is not restored; scroll bar does not redisplay after move)

Contents: completed.

Scroll bar: partially completed. (looks di�erent; has two unnecessary boxes at the

top and the bottom)

Resize corner: completed.

Maintaining proper appearance when the window is resized:

� Title bar: partially completed (title text not centered)

� Resize corner: completed.

� Contents: partially completed (height and width scaled incorrectly)

� Scroll bar: completed.

SUBJECT A2

Title bar: partially completed (no title text; the background along the moving path

is erased by the moving window)

Contents: completed.

Scroll bar: partially completed (looks di�erent; has more function than needed.

basically a standard Smalltalk scroll bar.)

Resize corner: not attempted.

Maintaining proper appearance when the window is resized:

� Title bar: not attempted.

� Resize corner: not attempted.

� Contents: not attempted.

� Scroll bar: not attempted.

63



Figure 6.2: A picture of the window to be built.

window is shown, and the upper right corner of the outline moves with the

cursor. When the user releases the button, the size of the window matches the

rubber band outline.

When the window is resized, the following properties should be maintained:

Title bar: height �xed, title text centered, the white background of the title

text remains the same size.

Resize corner: height and width �xed, sticks to the upper right corner of the

window.

Contents: height and width �xed.

Scroll bar: width �xed.

During the experiment, you will also have access to a running implementation

of the interface that you are about to build. It comprises the de�nitive speci�cation

for the interface.

6.2.3 Results

Both subjects in group B completed the assignment with all features implemented.

Subject B1 used 57 minutes, B2 used 2 hours and 3 minutes. The instability of the

version of MoDE used in the experiment accounts for much of this di�erence. During

the two hour period for the experiment, subject B2 crashed the system twice and was

thrown out of Smalltalk (not just MoDE). Because intermediate results were stored

in main memory and could not be recovered after the crashes, B2 had to start from

scratch after both crashes.

62



tools (except MoDE) they wished to use to implement the interface. The subjects in

group B (the less experienced Smalltalk programmers) were required to use MoDE

exclusively.

Both groups were given three hours in which to build the interface described

below.

6.2.2 The Assignment

The following text is a verbatim listing of the assignment given to the subjects.

6.2.2.1 Rules

� You are to build the interface illustrated in Figure 6.2 and described in more

detail below.

� (For group A) Use whatever tools you wish to help you.

(For group B) Use MoDE exclusively.

� You have up to 3 hours to build as much of the interface as you can. The time

you spend in completing the task will be recorded and is important.

� No comments, optimization, or documentation are required.

6.2.2.2 Description of the Interface to Be Built

The interface to be built is the window shown in Figure 6.2. The parts of the window

are described below.

Title bar: The title bar (at the bottom of the window) has a title text in it. When

the user presses the left mouse button in the title bar and drags, the whole

window moves with the mouse.

Contents: three boxes within a �eld larger than the window that can be used to

demonstrate the function of the scroll bar.

Scroll bar: used to scroll the contents of the window vertically.

Resize corner: When the user presses the left mouse button on top of the resize

corner (at the upper right corner of the window), a rubber band outline of the

61



Mode Event dispatching policies, such as a \priority list" policy where events are

sent to the modes according to their priorities, can be implemented by modifying

the event dispatching method de�ned in the Mode class.

With some additional work, MoDE could also be extended to handle 3-D inter-

action and audio interaction. These possible extensions are discussed in Section 7.2.

In principle, the concept of mode could be used to organize and create user interaction

in 3-D virtual realities in which modes are associated with locations in 3-D volumes

and have shapes and semantics that a�ect the 3-D virtual world.

6.1.3 Inappropriate Applications

There are some interfaces for which MoDE does not seem appropriate. They include

interfaces that do not use a bitmap display as their output device (such as force

feedback systems) and interfaces that do not use a pointer as the major input devices

(such as treadmill-input systems).

Since MoDE assumes an event-driven input mechanism, it is inappropriate for

user interfaces that use polling mechanisms.. Finally, MoDE is intended for direct-

manipulation interfaces. Although it is possible to create text-based interfaces with

MoDE, the concept of mode would not provide much help.

6.2 Productivity

An informal experiment was conducted to study the productivity gain produced by

MoDE. This section describes the experiment and its results.

6.2.1 Subjects

Four subjects were divided into two groups. Group A was composed of experienced

Smalltalk users (with �ve years and one-and-a-half years experience, respectively).

Both had extensive experience programming user interfaces in Smalltalk. Group B

consisted of two �rst year graduate students who started learning Smalltalk three

months before the experiment.

All subjects were asked to implement the same interface under Smalltalk. The

subjects in group A (the more experienced Smalltalk programmers) chose whatever

60



� Drag screen objects with frame (Mac, SunView), drag screen objects with actual

image (NeXT)

� Feedback (by highlighting) when a screen object is dragged over another one

(Mac, NeXT)

� Hierarchical menus that can be in the form of: pull-down menu(Mac), pop-up

menu (SunView), or tear-o� menu (NeXT)

� Inverse highlight (Mac), animation highlight (NeXT black-hole), change ap-

pearance highlight (NeXT folder)

� Screen objects that look 3-D (NeXT)

� Invoke menus from the border of a window (SunView)

� Windowing behaviors such as open and close windows with rubber-band e�ects,

and resize the windows (Mac, NeXT, SunView)

� Title bars for windows (Mac, NeXT, SunView)

Section 1 of the videotape in the appendix shows other sample interfaces cre-

ated with MoDE. These resources could be used to generate many other interfaces

using combination and variant form of the components described. By adding new

components, in the manner described, the range of possible interfaces could still be

further extended.

6.1.2 What MoDE Can Be Extended To Create

This section discusses interfaces that can not be built with the current implementation

of MoDE but could be handled by an extended MoDE. Again, the basic classes are

used to structure the discussion.

MDisplayObject The MDisplayObject has been designed for color display and has

variables reserved for color handling. The only reason that MoDE does not

run in full color is because the current version of Smalltalk does not support

colors. Once Smalltalk supports color or MoDE is ported to a platform that

does support colors, color images can be created immediately. Video images

can also be incorporated so long as the output can be clipped by the display

box of a mode.

MController New event types can be added to include new input devices such as

joystick and control dials. Programming is necessary to de�ne new event types.

59



(MDisplayObject)

(MController)

(SemanticObject)

Interaction

Semantics

Appearance

Figure 6.1: The three axes span the space of mode-types.

can be used in a MDisplayObject to de�ne an appearance. This includes text,

drawings, bitmaps, and animated pictures.

MController An MController performs the interaction by sending out messages

according to the types of input events received. The event types currently

supported by the system are: cursor move, enter/leave mode, button down/up,

button click, button double click, and various keyboard events. This set of

event types is su�cient for the implementation of most interactive techniques

(menus, dialogue boxes, buttons, etc.).

The set of shared behaviors de�ned in MController currently contains support

for dragging, resizing, linking, and menu processing. New behaviors may be

added into this set in the future.

SemanticObject Subclasses of the SemanticObject class are fully programmable by

the user. A user can program whatever Smalltalk function he wants in these

subclasses.

Mode The Mode class de�nes the event dispatching mechanism. Currently, it sup-

ports two event dispatching policies: the \hot cursor" policy that delivers events

to the front-most mode containing the cursor, and the \focused mode" policy

that delivers all events to a speci�c focused mode designated by the user.

With the above implementation, MoDE has been used to generate its own

interface and to generate test interfaces that simulate major components of the in-

teractions implemented in Macintosh, NeXT, and SunView. For the test interfaces,

no underlying data structure nor functions were implemented. The following is a list

of the style features simulated.

58



Chapter 6

Experience With MoDE

6.1 Generality

It is very di�cult to discuss formally the range of user interfaces that MoDE can create

because there are no comprehensive taxonomies of existing interaction techniques.

Additionally, new techniques are being created all the time. In fact, one of MoDE's

goals is to facilitate the creation of new techniques. Furthermore, since MoDE is

integrated with the Smalltalk programming environment, the user can always escape

from MoDE to Smalltalk and code any portion of an interface that MoDE does not

support. This further complicates an analysis of MoDE's generality. Consequently,

this section will discuss the range of applications MoDE can produce with the help

of examples.

6.1.1 What MoDE Can Create

In Section 3.4, three axes were described that span the space of mode-types, as shown

in Figure 6.1. The greater the number of mode-types a framework can span the more

general it is. Theoretically, almost any direct-manipulation interface (with a pointer

as an input device and bitmap display as output device) could be built with the Mode

framework. However, the current implementation of the three classes that realize its

three axes and the Mode class that realizes the event dispatching mechanism limit

the possible interfaces. This section discusses the generality of the Mode framework

with respect to the ranges of these four classes.

MDisplayObject TheMDisplayObject class provides ways to de�ne the appearance

of a mode. All objects that understand the Smalltalk DisplayObject protocol

57



5.6 Summary

The Mode Composer provides a direct-manipulation user interface to the users of

MoDE. It supports the editing of modes and their connections as well as the man-

agement of the interaction technique library.

56



Figure 5.10: The Mode Composer is used to edit itself.

between the ShrinkBox and the Window of the interaction technique library. The

user has also made several changes to MoDE. The two scroll bars of the interaction

technique library were removed, and a Roam Box (a two-dimensional scrolling device)

has been attached.

Since it is easy for users to customize the user interface of MoDE, other users'

interfaces may look and feel di�erently than the author's presented here.

5.5.2 Classes Do Not Make Good Types

Recently, there has been a debate in the object-oriented community on whether classes

make good types. Many argued that classes are merely for implementation purposes

since they do not characterize the \behavior" (type) of objects properly. The inter-

action technique library provides an interesting example that supports the argument.

Observation of the use of the Mode Composer shows that its users naturally treat

each object in the library as a type. For example, a user might drag a button out

of the library, change its border width, and promote the changed button back to the

library. From then on, he would think he has two types of buttons instead of one.

The same thing happened to changes made to the controller and the semantic object.

Even though the two buttons are composed of parts from the same classes, they are

treated as di�erent types. Classes are not su�cient to di�erentiate these types. In

the interaction technique library the di�erences come more from the values of the

instance variables of the objects than the classes to which they belong. This supports

the choice of using prototypes which preserve the values of the instance variables,

instead of classes, to represent objects in the interaction technique library.

55



coding. All messages associated with a connection are managed by the system and

can be inspected and modi�ed by invoking program editors through menu selection.

Often in programming a semantic object one would like to create a subclass

and put all the changes there to avoid a�ecting other semantic objects from the

base class. This requires replacing the original semantic object with a new instance

of the subclass, with all values in the instance variables preserved and all existing

connections, in and out, maintained. The Mode Composer provides this service au-

tomatically when the user selects the \Subclass" option in the menu associated with

the semantic object.

5.4 Library Management

The MoDE library stores the interaction techniques as \prototypes" [Lie86] (live

objects with values in the instance variables retained). Each library object represents

a \prototype," as opposed to the class, of an interaction technique. As a consequence,

when promoting an interaction technique, only a live copy of the technique must be

created and registered; there is no need to recompile the library. Furthermore, once

an interaction technique is promoted into the library, it can be reused immediately

by making copies of it. The above properties allow the library to be dynamically

expanded. Interactive techniques stored in the library can also be written to �les.

These �les can be read by other interface developers' libraries to share interaction

techniques.

Besides the orthogonal design of the mode framework, the capability to intro-

duce new objects to the library easily is also essential to the generality of the system.

If an interface builder were to have a �xed set of library objects, the kind of interfaces

that it could create would be limited. Since the user of MoDE can freely promote new

objects into the interaction technique library, MoDE is not limited in this respect.

5.5 Discussion

5.5.1 Self-Creation

Not only is the Mode Composer an important component of MoDE, it is also an

important application of MoDE. To demonstrate the generality of MoDE, the user

interface of MoDE was created using itself. Consequently, MoDE can be used to edit

itself. For example, in Figure 5.10, MoDE is being used to examine the connection

54



allows all interface objects to be editable. The regularity of the Mode framework

removes the need for special case editors. Since all modes have the same structure,

they can be edited with a single editor. The orthogonal design also helps. Since

the components of a mode are orthogonal to one another, individual editors can be

designed for each one of them without worrying about the dependencies among them.

Finally, since the meta-key mechanism is built with MoDE, it can be edited by the

Mode Composer. This makes its design, development, testing, and maintenance easy.

The capability of MoDE to mix its event-driven interfaces with the original

Smalltalk polling interfaces reduces the e�ort in creating editors for di�erent parts of a

mode. For example, the Smalltalk dictionary inspector is used to edit the controller's

eventResponses table. The Smalltalk MVC inspector can be used to inspect the

mode, the controller, and the semantic object at once.

5.3 Connection Editing

Connections in MoDE are implemented as object pointers. There are two purposes for

having a pointer to an object: to send messages to the object or to manipulate it as a

whole (for instance, to assign it to a variable or to pass it around). MoDE assumes that

a connection is primarily intended for message sending. Although most of the support

from MoDE is for message sending, the connections can still be used to manipulate

objects as a whole. In order for an object to send a message to another object, it

must have the object pointer of the receiving object. Usually this is done by storing

the object pointer in one of the sending object's instance variables. All semantic

objects have a default instance variable, target1, for this purpose. When more than

one connection are necessary, new instance variables are created automatically by the

system. Object pointers can also be stored in a collection to avoid creating many

instance variables. Only one instance variable is needed to keep the collection.

The semantic object of a mode can be shown when the mode is in the editable

state. (Actually, it is the visual representative of the semantic object that is shown

since the semantic object is invisible.) The \Show Connection" command shows

the connections to and from a semantic object. Connections can be one way or

bidirectional. They are added and removed with direct manipulation.

After a connection has been established, messages sent across the connection

can be associated with it. If a message is entered that is not understood by the

receiving object, the system will automatically invoke a program editor for the user

to create the corresponding method. The user can code the method or simply put

comments there. The latter provides a way to specify a skeleton of a system without

53



Finally, to make the desk calculator a better \citizen" of the windowing envi-

ronment, the user drags a window out of the interaction technique library and places

the calculator in the window, as shown in Figure 5.9. Now the desk calculator can

be moved around and closed into an icon just like other applications.

This example has demonstrated the basic rhythm of use for the Mode Com-

poser. In the sections that follow, additional details are discussed.

5.2 Mode Editing

A mode can be edited not only in the Mode Composer but also when it is in use.

Editing capability is built into everymode and can be turned on and o�. When it is on,

all modes respond to a special meta key (Control-E in the current implementation).

When a mode receives the meta key, it stops its normal execution and place itself

into an editable state where various editors can be invoked. This state is indicated

by eight small resize boxes surrounding the mode (see Figure 5.1). From this state,

all parts of the mode can be accessed and modi�ed.

The capability to interrupt a running interface at any point is essential to

providing better support for testing and maintenance. Traditionally, people set break

points in the programs to test and debug them. Often, the most di�cult part of

using break points is deciding where to set them. An interface developer often has to

read through and understand many pages of code and make several trials before he

�nds a good location for a break point. By allowing its user to interrupt a running

interface at any point, the Mode Composer can help the user to �nd the locations

for inserting break points quickly. In most cases, a user of the Mode Composer can

rapidly go to the point where he can access the testing and debugging information he

needs without even setting any break points.

The meta-key mechanism is built with MoDE also. When a controller of a

mode receives the meta key event, it instructs the mode to enter the editable state.

The mode does so by putting up a transparent mode that covers the entire screen

to block all existing modes (including itself) from receiving events during the editing

period. On top of the transparent mode, the eight small resize boxes (each one is a

mode) and a transparent proxy mode that covers exactly the area of the edited mode

are attached. The proxy mode provides the edit menu and allows the user to drag

the edited mode. When the user �nishes the editing, the big mode (as well as the

nine submodes of it) is removed and the interface goes back to the normal execution

state.

Since in the Mode framework, everything is a mode, the above arrangement

52



Figure 5.8: The binary desk calculator is promoted into the interaction technique

library.

Figure 5.9: The calculator is put into a window.

51



Figure 5.7: The interface and the application are fully connected.

Since the computing component is created from scratch and does not under-

stand the buttonPushed: message, the user selects the Add Message option in the

menu associated with the link. The system will open a code editor in which the user

can de�ne the buttonPushed: method in the DeskCal class.

In the process of de�ning the method, the user needs to know what message

can be sent to the display window to display the result of a computation. The system

can help by displaying the messages understood by the semantic object of the display

window. In Figure 5.6, the list of understood messages is shown and the user �nds

that the displayText: method is the one he needs.

The other two buttons can be connected in the same manner. Figure 5.7

shows the fully connected desk calculator. Since all interfaces created with MoDE

are immediately testable, there is no need to switch to a test state. Further, the

user can test the partially implemented interface at any point in its development.

In Figure 5.7, for example, the button 1 was pushed and the display window of the

calculator shows the correct result.

To complete the example, the user must de�ne the functions of the clear but-

ton. Two approachs suggest themselves. The �rst one is to keep the default message

(buttonPushed:). Whenever the button is pushed, the message buttonPushed: will

be sent to the computing component with the string C as an argument. The comput-

ing component then interpret the argument C as a special command. An alternative is

to use a di�erent message selector (for example clear) and de�ne the corresponding

method in the DeskCal class. Both approachs are valid. The Mode Composer allows

the user to choose whichever he prefers.

After the user �nishes developing the interface, he hides all the connections

and promotes the calculator into the interaction technique library by dragging the

desk calculator into the library. The library automatically prepares an icon for the

calculator, as shown in Figure 5.8.

50



Figure 5.4: Inspect the semantic object.

Figure 5.5: The default action message is buttonPushed:.

Figure 5.6: The system shows a list of the messages understood by the semantic

object of the display window.

49



Figure 5.3: System requests permission to create new instance variable for the con-

nection.

create the the computing component of the desk calculator and its visual represen-

tative. The computing component is not a visible user interface object, it has to be

represented as an icon so that it can be displayed and manipulated directly. Here, the

user decides to create the computing component from scratch. A new class, named

DeskCal, is de�ned and an instance of the class is created. The visual representative of

this instance (with the text Ap-aDeskCal) is shown. Recall that the semantic objects

are the points of connection. To establish the connection between the user interface

and the computing component, the semantic objects must be present. In Figure 5.2

the user is requesting the system to show the representative of the semantic object of

the display window.

Figure 5.3 shows the semantic objects (represented by diamond shaped icons

containing an \S") for the display window and the 1 button. The user has created a

link from the semantic object of the 1 button to the computing component, and would

like to create another link from the computing component to the semantic object of

the display window. His plan is for the semantic object of the 1 button to send a

message to the computing component whenever the button is pushed. The computing

component, in response, updates its states and requests the display window to display

the digit 1 by sending a message to the semantic object. Since the DeskCal class is

a new class, it does not have an instance variable in which to store the connection.

The system infers that a new instance variable is needed and suggests to create one,

as shown by the button (USE NEW inst Var) in Figure 5.3. Once the user clicks

on the button, the Mode Composer will prompt the user for the name of the new

instance variable, change the class de�nition of the DeskCal to insert this new instance

variable, and update all the existing instances of the class.

Next, the user selects the Inspect option in the menu associated with the seman-

tic object to inspect the 1 button (Figure 5.4). The inspector, shown in Figure 5.5,

indicates that the default action message for the button is buttonPushed: The colon

at the end indicates that there is one argument for this message. By default it is the

text string of the button.

48



Figure 5.1: Editing the appearance of a mode.

Figure 5.2: Showing the semantic object for the display window.

47



Chapter 5

MoDE: Mode Composer

The Mode Composer is the direct-manipulation user interface of MoDE. It allows

the user to create an interface, edit it, and connect the interface to the application

through direct manipulation. It also illustrates some of the capabilities of the MoDE

approach to user interface design.

5.1 Mode Composer in Action

The Mode Composer is described, �rst, in relation to a concrete example. This section

illustrates the use of the Mode Composer to create an interface for a simple binary

desk calculator with one display window and three push buttons{\0," \1," and \C"

(the clear button). Space limitations require that some details be left out, but further

explanations of the process appear in subsequent sections. To gain a true sense of the

look and feel of the Mode Composer, the reader should view the videotape included

in Appendix C.

With the Mode Composer, interfaces are created by dragging objects (modes)

out of the interaction technique library (the right-hand window in Figure 5.1) and

pasting them together. In Figure 5.1, the user has created a Vanilla Mode, shown in

the left of the �gure, that will be used as the background of the calculator, and is

now editing its appearance.

Next, the user creates the three buttons and the display window for the desk

calculator and pastes them onto the background. This process is similar to drawing

a picture with a drawing tool. The result is shown in Figure 5.2.

The Application Creator shown in the lower right corner of Figure 5.2 is used to

46



4.4 Summary

This chapter discussed the implementation of MoDE. An event-driven mechanism was

introduced to provide better utilization of the CPU and a solution to the compatibility

problem between polling and event-driven user interfaces. The four basic classes of

MoDE were also discussed. A comparison between the MVC framework and Mode

framework explained how orthogonality among user interface components is achieved.

45



separates responsibilities among MVC framework objects

separates responsibilities between the user interface and the application

SemanticObjectMode Application

User Interface Application

Model

Controller

View
MDisplayObject

MController

separates responsibilities among Mode framework objects

Figure 4.6: The responsibilities are partitioned di�erently in the Mode framework

than in the MVC framework.

44



Views

Some MVC views also overstep their authority by incorporating semantic informa-

tion. These views often keep information and code that could be decomposed and

distributed more appropriately among semantic objects and subviews. For example,

the SelectionInListView keeps the list of items, remembers which one of them is se-

lected, and highlights or dehighlights the items. The SelectionInListView has to do

all this because it is at the bottom of the view hierarchy (it has no subviews). The

list items are not subviews.

With the Mode framework, on the other hand, each list item is a mode and

knows how to highlight and dehighlight itself. The instance variables and the code

to handle the selection are moved to their semantic objects. This arrangement not

only simpli�es the interface but also makes it more exible. For example, one can

use bitmaps, drawings, and animated pictures in the display object of the list item

modes to create a nontext list. One can also freely select the highlight styles for each

individual list item (as opposed to having a single �xed inverse highlight for all of

them). This is very useful for nontext list since inversing a nontext item may not

be the proper way of highlighting it. For example, the trash icon in Section 1 of the

videotape can convey more semantics when it is highlighted with its lid open.

Smalltalk menus, which were not built with the MVC framework, provide a

related example. A Smalltalk menu is a single complicated object. In MoDE, menus

are built with modes: each menu item is a mode; this makes the menus more exible.

Item modes can also share components with the list mode.

Models

In the MVC framework, models do not have direct access to their views and con-

trollers. When a model changes, a message is broadcast to notify all of its views

and controllers. The views and the controllers then query the model and update

themselves to reect the change. This has several disadvantages. First, the model

may be a widely shared data object that has a large number of views. Having all the

views query it whenever there is a change is costly. Also, the broadcast mechanism

usually requires smart user interfaces that know how to query the models and update

themselves. The code that supports this intelligence goes to either the view class or

the controller class. Thus, knowledge of the application (model) is inserted into the

user interface. Once this is done, the model, view, and controller are, in fact, coupled.

The Mode framework solves this problem by abstracting this intelligence into

the semantic object. This frees the other objects from the need to be coupled with

each other. Figure 4.6 shows the partition of responsibilities in the Mode framework

and in the MVC framework. The circles indicate the objects in the Mode framework.

The dashed lines show the corresponding MVC objects (their names are in italics).

43



The Smalltalk MVC framework comes close to the ideal of orthogonality since

it separates the model, view, and controller into three di�erent objects. Unfortu-

nately, these three objects are closely coupled, resulting in what is, essentially, a

one-dimensional type-space, as discussed in Section 3.4.

MoDE carries the concept of orthogonality further than existing systems. To

examine some of the implications of this design, this section compares the Mode

framework with the MVC framework, the most exible alternative paradigm. Al-

though the comparison is made only between two speci�c frameworks, many of the

points are applicable to object-oriented design in general.

Controllers

In the MVC framework, in addition to their de�ned role as interface objects, con-

trollers are often involved in processing the semantics, as well. For example, many

controllers are responsible for creating menus, invoking them, and executing the se-

lected operations. Many subclasses of Controller are created just to provide di�erent

menus. For example, the IconController and the ProjectIconController are identical

except for their menus. In MoDE, controllers are not involved in semantic processing.

They invoke menus to interact with the user but leave the creation of menus and the

execution of their operations to the semantic objects. Since the controller does not

have deep knowledge of the menus, it is less tightly coupled to the semantics of the

system. This reduces the number of controller classes needed while making the exist-

ing controllers more reusable. For example, a single controller in MoDE can handle

the cases of both IconController and ProjectIconController in the MVC framework.

In the MVC framework, some controllers (BinaryChoiceController, for exam-

ple) query the state of their models to determine what kind of interaction to perform.

This couples the controllers with their models. In MoDE, when the state of a se-

mantic object changes and requires a di�erent interaction, a di�erent controller is

assigned to the mode. No controller has to query the state of its semantic object.

This approach is actually used in MoDE to provide semantic feedback for dragging.

When a mode is dragged by the user, all other modes on the screen switch to their

drag-handling controllers. For example, the trash mode switches to a controller that

highlights the mode when the dragged object is on top of it and responds to the

mouse button release event to discard the dragged mode. The trash mode switches

back to its normal controller after the drag action is �nished.

Another limitation on MVC controllers which impedes orthogonality is their

polling protocol. The MVC controllers must constantly query their views for the

information necessary to decide when and where to pass control. The event-driven

mechanism of MoDE takes charge of the control passing. This frees the controller

from querying the mode and makes the two less dependent on each other.

42



This example shows the basic internal interactions among the kernel objects.

The next section discusses how these objects are used in designing and constructing

an interface.

4.2.6 Designing An Interface with MoDE

The mode concept provides a uni�ed architecture for interfaces. An interface is com-

posed of nothing but modes. Given a speci�cation of a user interface, a developer

using MoDE �rst identi�es the areas on the screen that should have di�erent ap-

pearance, interaction, and semantics relative to the surrounding contexts. Each of

these areas becomes a mode in the Mode framework. This approach decomposes the

interface into modes that can be re�ned individually. For each mode, the developer

reuses or creates display objects to de�ne the mode's appearance. Often, an existing

controller can be used to de�ne the interactions of a mode. If no controller provides

exactly the interaction wanted, a new controller can be created by editing a copy

of the eventResponses table from an existing controller. The semantic object of a

mode is then programmed to handle the messages from both the controller and the

underlying application. The Mode Composer, described in Chapter 5, supports the

above activities as well as the creation and management of the connections among the

semantic objects and between the semantic objects and the underlying application.

4.3 A Comparison to MVC framework

The MController, MDisplayObject, and SemanticObject classes de�ne user interface

components that are largely orthogonal to one another. As a consequence, these parts

are more likely to be reused.

Many systems, such as X Toolkit [MA88], come with a set of interaction tech-

niques (widgets); however they do not separate the interaction, appearance, and

semantics components into objects. Consequently, it is impossible to reuse individual

component objects since they do not exist. ICpak 201 [Ste88] does incorporate the

concept of a separate interaction component, but the appearance of an interaction

technique is hard-wired. The NeXT Application Kit [NeX88] allows parameterized

appearance (subject to the limitations discussed in Section 3.4) but does not have a

separate interaction object

3

.

3

Graphical user interface speci�cations, such as OpenLook and Motif, are not discussed since

they are independent to the internal architecture of the user interfaces that conform to the speci�ed

styles.

41



highlight

highlightSlave:

SemObj-SSemObj-M

Controller-M DispObj-S

SlaveMaster

Figure 4.5: A simple example.

e�ciently.

The following is a simple example to illustrate how the four classes described

above interact with one another. A more complex example will be shown in Chapter 5.

Figure 4.5 shows the example interface. It has two modes: Master and Slave

(represented by the gray boxes). When the user pushes the left mouse button in

the Master mode, the Slave mode is highlighted. To accomplish this interaction, the

following sequence of actions takes place.

� After the user pushes the button, the event generation mechanism that underlies

MoDE generates a leftButtonDown event.

� The event dispatching mechanism, implemented in the Mode class, delivers the

event to the Master mode.

� The Master mode asks its controller (Controller-M) to process the event.

� Controller-M matches the event type against the keys in its eventResponses

table (not shown in the �gure) and �nds that there is a match. The value of the

matched key (a message selector highlightSlave:) ends with a colon. This

indicates that the message should be sent to the semantic object (SemObj-M)

with the event as an argument.

� SemObj-M in turn, sends an highlight message to SemObj-S (the semantic

object of the Slave mode).

� The highlightmethod de�ned in SemObj-S highlights the Slave mode by asking

the mode's display object (DispObj-S) to display the inverse of itself. This

completes the interaction.

40



insideColor

dispObj

setUnclippedDispBox:

image

mode

displayOn:withUnclippedDispBox:visibleRects:

processEvent:

unclippedDispBox

highlight/deHighlight

display

erase

borderWidth

borderColor

contents

highlightDispObj

controller

target1

Mode

MDisplayObjectSemanticObject

messages to reflect
the semantic action

coloned messages in the
eventResponses table

messages to other semantic
objects or the application

MController

mode

eventResponses

semObj

Figure 4.4: The relationships among the four kernel classes.

change the mode's position use the setUnclippedDispBox: method to set it to its

�nal position.

If the message selector ends with a colon, the event is processed by the semantic

object. A subclass of the SemanticObject class should be created to implement the

method corresponding to the message. This method, in turn, may send messages to

the mode to reect the semantic action.

No speci�c messages are used by the SemanticObject class, but the subclasses

of the SemanticObject class may use all the public messages of the Mode class. An

instance of the subclass of the SemanticObject may use those messages to alter the ap-

pearance of the mode, switch the mode's controller, or activate/inactivate the mode.

The semantic object may also send messages to other semantic objects or the under-

lying application to further propagate the semantic action.

The MDisplayObject does not send messages to other objects. It merely main-

tains the appearance of the mode (inside color, border color, border width, and the dis-

playable objects in its contents collection) and displays itself upon request. The full

message sent from the mode is displayOn: aMedium withUnclippedDispBox: aBox

visibleRects: aRectCltn. aMedium can be the screen or a bitmap. The latter is

for bu�ering the output to speed up the displaying. The aBox and aRectCltn are

necessary for the display object to follow the clipping algorithm and to display itself

39



All objects that understand the protocols de�ned in the DisplayObject

2

class can be

put into this collection. They can be text, drawings, forms, and animated pictures.

The display method accepts two arguments from the mode{a display box and

a collection of visible rectangles. The display box de�nes the size and position of the

mode. The visible rectangles de�ne the visible portion of the mode computed by the

clipping algorithm.

The MDisplayObject has the capability to bu�er its output as a bitmap. This

speeds up the display of complex objects.

4.2.5 Interactions Among the Four Kernel Classes

This section discusses how the four classes described above relate to one another.

Figure 4.4 illustrates the message-sending relationships among the four kernel classes.

Each class is represented by a box with its important instance variables listed in the

box. An arrow at the end of a line indicates the direction of messages. Message

arguments are omitted; only the message names are shown. The number of colons in

a message name corresponds to the number of arguments. Descriptions of message

groups are in Times-Roman.

The Mode class is responsible for event dispatching. When the user performs

an action that generates an event, the modes on the screen cooperate to �nd the

receiving mode and send the event to it. (See Section A.3.3 in the Appendix for more

details on how this is done.) The receiving mode then asks its controller to process

the event by sending the processEvent: message with the event as an argument.

Upon receiving the message, an MController checks the event type against the

keys in its eventResponses table. If the value of the key that matches the event

type is a message selector that does not end with a colon, the event is processed

by local methods de�ned in the controller. These methods, in turn, use methods

de�ned in the Mode class to perform the interactions. The erase method erases

the mode before it is moved, and the display method displays it after it is moved.

The highlight method switches the mode's dispObj and highlightDispObj and

redisplays it. The deHighlight method does the reverse. The unclippedDispBox

method returns the display box of the mode without being clipped by the the display

box of the supermode. The unclipped display box is used to draw the indication box

when a mode is moved with its frame. The image method returns the image of the

mode that can be used to move the mode with its actual image. All operations that

2

DisplayObject is a Smalltalk class. It de�nes the behavior of all displayable objects. Instances

of this class know how to display themselves given a medium and a location on the medium.

38



for interactive construction and editing of user interfaces.

Under this scheme, creating a class for a controller is used mainly for grouping

the code of the shared behaviors and limiting assess to them. In some cases, a

frequently used controller can be made a class for ease of reference.

4.2.3 SemanticObject

Semantic objects are programmable in the Mode framework. If an interaction tech-

nique is created by coding (instead of using the Mode Composer introduced in Sec-

tion 1.1), it will have its own class, which is a subclass of the SemanticObject class.

Instances of this interaction technique are created by sending creation messages to

its class. The SemanticObject class de�nes a set of initialization methods to set

up the parts in the Mode framework. They are setUpMode, setUpController, and

setUpAppearance. Whenever a subclass of SemanticObject is sent a creation mes-

sage, these three methods are invoked automatically to create and initialize the parts

of a mode and to connect them to one another.

Subclasses of SemanticObject implement a \controller-msg" protocol to sup-

port the messages sent from the controller. Recall that, in the eventResponses

table, message selectors that end with a colon are sent to the semantic object. The

\controller-msg" protocol implements those messages.

The subclasses of SemanticObject that use menus to interact with the end

user follow the convention described below. Each class implements two protocols.

The \Menu Access" protocol contains methods that return menus. For example, the

middleButtonMenu method returns the menu for the middle button of the mouse.

The \Menu Support" protocol contains methods that support the menu options.

SemanticObject de�nes a default instance variable { target1 { to store the

connection to other objects. New instance variables are de�ned in the subclasses

of SemanticObject as more connections are needed. The connection aspects of the

semantic object will be discussed in more detail in Chapter 5.

4.2.4 MDisplayObject

Instances of theMDisplayObject class control the \background" of modes. The \back-

ground" includes the inside color, the border, and zero or more displayable objects.

The instance variable contents holds a table that keeps these displayable objects.

37



this querying capability, such as C++, one can associate tags with function pointers

to implement this feature.

4.2.2.2 Shared Behaviors

The MController class and its subclasses implement a set of shared behaviors as

instance methods. They include common behaviors such as menu invocation, rubber-

band lines and boxes, mode dragging, mode highlighting, and mode resizing. These

behaviors are shared since any instance of the class or the subclass can invoke them.

A shared behavior is invoked by placing the name of its corresponding method into

the controller's eventResponses table as a value.

Local behaviors are promoted into the set of shared behaviors if they are used

frequently and do not require semantic information. That is, it can be handled by

the controller and the mode.

4.2.2.3 Inheritance of Controllers

The sharing of interactive behaviors cannot be supported by a single inheritance

scheme, such as that provided by Smalltalk or Objective-C. For example, suppose

controller A highlights the mode when the cursor moves into its area, and controller

B allows the user to drag the mode with the mouse. If one would like to have a

controller C which behaves like a combination of A and B (both highlight and drag),

what would the inheritance structure be? If C were made a subclass of A, the behavior

of B (dragging) would not be inherited and would have to be duplicated in class C.

Making C a subclass of B requires the behavior of A (highlighting) to be duplicated.

Neither solution is satisfactory.

This kind of problem is not unique to user interface construction { many object

oriented applications have the same problem { but the situation here is particularly

severe. In other application areas, one may be able to treat the problem as a special

case and work around it with ad hoc solutions. Here, it is very common to have

controllers that would like to inherit from two, three, or even more controllers. In-

stead of maintaining a general multiple inheritance mechanism just for this need,

MoDE provides a speci�c mechanism { the eventResponses table { to solve the

problem. Rather than having a lot of controller classes, all controllers are instances

of the MController class. Inheriting from a controller is achieved by copying the con-

tents of its eventResponses table. Multiple inheritance is simulated by copying the

contents from multiple eventResponses table. Using a table instead of an actual

multiple inheritance mechanism also provides the extra run-time exibility essential

36



EVENT TYPE MESSAGE

action:

deHighlight

highlight

leftButtonDown

leaveMode

enterMode

Figure 4.3: A simple eventResponses table.

4.2.2 MController

The MController class realizes the interaction component of a mode.

4.2.2.1 The eventResponses Table

TheMController performs interactions by sending out messages according to the type

of events it receives. The instance variable eventResponses of this class holds a table

that stores the mapping between interested event types and messages

1

. Figure 4.3

shows a simple eventResponses table. The keys of the table (enterMode, leaveMode,

and leftButtonDown) are the event types and the values (highlight, deHighlight,

and action:) are message selectors. When a MController is asked by its mode to

process an event, it checks whether the event type matches any of the keys in the

eventResponses table. If there is no match, a false is returned immediately and

the event is sent to the next mode for processing. If there is a match, the value

(a message selector) of that key is examined. If the selector ends with a colon (for

example action:), a message is sent to the semantic object using the selector with

that event as the argument. Otherwise, the message is sent to the controller itself and

is handled by the shared-behavior mechanism described below. Since the controller

has access to the event, it does not need the event as a message argument. This is

why the message selectors (for example, highlight and deHighlight) intended for

the controller do not end with a colon.

In Smalltalk syntax, a message selector ending with a colon requires an argu-

ment. An MController can query a message selector at run-time to decide whether

it ends with a colon or not. In a more conventional language that does not support

1

This table is implemented as a Smalltalk dictionary.

35



A

Figure 4.2: Clipping capability is essential to the interaction in a mode that is partially

obscured by other modes.

and therefore can not interact with the user. Each Mode has its own local coordinate

system and a transformation (both translation and scaling) that maps between the

local coordinates and the screen coordinates.

A simple constraint system provides a convenient way to specify the position

and size of a mode when its superMode changes its position and size. An example

of this would be to specify a vertical scroll bar in a window. When the window is

resized, the constraints can be used to stretch the scroll bar vertically so that the

top and the bottom touch the border of the window while maintaining its width as a

constant.

Several methods are provided to support operations that manage the sub/super

mode hierarchy. These operations include adding and removing submodes and re-

ordering the order of the submodes (like bring to top, send to bottom, etc.).

4.2.1.3 Displaying

A Mode displays itself by �rst asking its display object to display its background

and then asking all contained submodes to display themselves. The built-in clipping

algorithm draws only the portions of the mode that are unobscured. This capability

makes it possible for a partially obscured mode to interact with the user. For example,

in Figure 4.2, the mode containing an \A" is partially obscured by the gray mode.

Without clipping, one could not highlight the mode without either bringing it and

its superModes to the top or redisplaying part of the gray mode. With the clipping

algorithm, the mode can display only the portion that is unobscured and avoid the

above problems.

34



(MDisplayObject)

(MController)

(SemanticObject)

Interaction

Semantics

Appearance

Figure 4.1: Correspondence between the axes and the implementation.

is very hard to de�ne orthogonal axes in reality. The design presented in this section

is the author's attempt to create a design with maximum orthogonality.

4.2.1 Mode

The Mode class implements the basic structure of a mode discussed in Section 3.3. In

the current implementation, each Mode has an MController, an MDisplayObject and

a SemanticObject. Mode coordinates the activities of these three objects to perform

the interaction.

4.2.1.1 Event Handling

A major responsibility of Mode is to handle event dispatching. Two methods provide

this function. The interestedIn: method takes an event as an argument and returns

true when the Mode is active (an inactive mode does not interact with the user) and

the event happened in the area controlled by the Mode. The processEvent: method

asks the controller to process the event when interestedIn: returns true.

4.2.1.2 Windowing

Mode provides window management functions. Each instance of Mode can be active

or inactive. When a Mode is active, it can interact with the user by receiving the

input events and responding to them. An inactive Mode does not receive any events,

33



4.1 The MoDE Event-Driven Mechanism

This section provides an overview of the MoDE event-driven mechanism. It is de-

scribed in detail in Appendix A. This mechanism not only solves the performance

problem associated with a polling protocol but also allows interface objects built

under both polling and event-driven mechanisms to be used by each other with no

modi�cation and no performance penalty.

The event-driven mechanism consists of three components:

Event generator that generates events according to user's actions. Currently, the

event types generated include: cursorMove, [leftjmiddlejright] Button

[UpjDownjClickjDoubleClick], and keyboardEvents. New event types can be

added by the user.

Event queue that bu�ers the events generated by the event generator and allows

di�erent applications running on di�erent processes to have sequential access to

the events.

Event dispatching mechanism that delivers the events to the right modes. The

design of this mechanism is vital for the compatibility between the polling and

event-driven interface objects. Appendix A includes a full description of the

mechanism.

As mentioned in Section 3.3, a user interface might be composed of a group

of hierarchically structured modes. The one mode at the top of the hierarchy is

called the \rootMode." It is an instance of RootMode class where the event-fetching

loop is de�ned. A typical application would have a single RootMode and a hierarchy

of modes. To allow multiple active applications, a built-in mechanism is provided in

RootMode to guarantee that no two RootModes will attempt to access the event queue

at the same time.

4.2 Basic Classes

This section introduces the four basic classes that make up the Mode framework.

They are Mode, MController, MDisplayObject, and SemanticObject. The Mode class

is responsible for event dispatching and window management. The other three classes

correspond to the three orthogonal axes discussed in Section 3.4. Figure 4.1 shows the

correspondence between the three classes and the three axes. As mentioned before, it

32



Chapter 4

MoDE: Kernel

This chapter introduces the MoDE kernel which realizes the concepts discussed in

the previous chapter. The Mode framework is general within the object-oriented

programming paradigm and could be implemented in a number of object-oriented

languages. However, since the proof-of-concept system was built using Smalltalk

and because Smalltalk terms have been widely used as a vocabulary in which to

discuss object-oriented concepts, architectural details are discussed using Smalltalk

terminology.

Most object-oriented systems use an event-driven control mechanism, rather

than the polling control-passing protocol used by Smalltalk. Consequently, to make

the proof-of-concept system more consistent with those systems and to provide better

performance, an event-driven mechanism was built to replace the Smalltalk polling

control-passing protocol. It is discussed briey in Section 4.1, and in more detail in

Appendix A. Built on top of this event-driven mechanism are four basic classes that

realize the Mode framework. They are described in Section 4.2. Section 4.3 compares

the classes introduced in Section 4.2 with the Smalltalk MVC classes to illustrate how

the orthogonality of MoDE is achieved and how it increases component reusability.

MoDE has a rather small kernel, currently consisting of about 3,600 lines of

code. However, this small kernel is capable of creating a wide variety of applications

including its own direct-manipulation user interface { the Mode Composer. The next

chapter will discuss this important application and component of MoDE. Section 7.2

includes a discussion on how the approach of MoDE can be applied to production

user interface needs.

31



a single large application interface. Instead, an interface object sees, through its se-

mantic component residing in the connection domain, a small piece of the application

that implements its semantics. The large application interface, which is hard to re-

duce without limiting the communication, is thus divided into small, independent,

and manageable pieces maintained by the system. Since communication is provided

through general object-oriented message passing (instead of callbacks), the applica-

tion no longer has to determine which user interface object is generating the call.

With a graphical editor to help the developer to make the connections and to

locate the objects that implement the semantics of a mode, the complexity perceived

by a user is even further reduced. This will be illustrated in more detail in Chapter 5.

3.6 Summary

This chapter introduced the conceptual background of MoDE. It included the concept

of mode, the Mode framework, the type-space for modes, the orthogonal properties

of mode components, and the MoDE connection model. The next chapter describes

a realization of the concepts developed in this chapter.

30



A domain for connection

User
Interface

Application

Figure 3.9: A decentralized connection model.

the user interface; the other is to establish closer communication between the two.

The MoDE communication model tries to do both. The goal is to support strong

connection with minimum complexity. Unlike GREASE [Hurley 89] which provides a

single centralized \UI-application interface," MoDE provides a domain for connection

where the semantic components of modes reside, as shown in Figure 3.9.

Since this domain has knowledge of the application, it can be used to build

more semantic power into the user interface. For example, a direct-manipulation

interface might cache some information of the application in this domain to help it

reduce the number of queries to the application (by using the information directly or

by using the information to compute more intelligent queries). Furthermore, this do-

main becomes a layer that insulates the e�ects of change from both the user interface

and the application.

An advantage the MoDE connection model has over the callback mechanism

is the capability of storing knowledge of the user interface in this middle layer. This

allows the application to remain unchanged when changes are made in the user inter-

face. For example, with callback mechanisms, an application that calls the drawing

routines in the user interface often has to be modi�ed when a new drawing library

is installed. This is because the knowledge of the interface (how to use the drawing

library) is stored in the application. With the MoDE connection model, the same

knowledge can be stored in the connection domain. When a new drawing library

comes, only this middle layer is adjusted and the application can remain unchanged.

Within the domain, the semantic components serve as the basic unit for con-

nection. They and their connections form a directed graph. The nodes in the graph

are the semantic components and the arcs denote the paths over which messages are

sent. This graph de�nes a decentralized interface between the user interface and the

application.

With this distributed connection model, interface objects no longer deal with

29



3.5.1 A Historical View of Connection Models

Figure 3.8 depicts the evolution of user interface connection models. In the early sys-

tems, there was no separation, as shown in (a). Systems were di�cult to create and

maintain because the user interface and the application were closely coupled. Each

new application required writing a new user interface. The strong separation model,

as shown in (b), was developed to provide modularity. Communication between the

user interface and the application was achieved by \token passing," where prede�ned

high level tokens (mostly at the semantic level) were sent across the link between

the two. A typical example would be a database and its front-end linked by a query

language. With strong separation, the interface and the application communicate

rarely and the kinds of information (i.e., the number of di�erent types of semantic

tokens) communicated are few and stable. This is denoted by a thin line in the dia-

gram. Strong separation worked �ne until direct-manipulation interfaces came along;

in these this approach provided inadequate support for the frequent communication

between the interface and the application. In direct-manipulation interfaces, the ap-

plication and interface need to communicate frequently (up to 30 times a second), for

example, to determine legal positions for an object being dragged with the mouse.

Also, the types of information communicated are more diverse.

Callback mechanisms were developed to support the communication needs (in-

dicated by a thicker channel in the diagram) of direct-manipulation user interfaces

and to maintain the physical separation between the user interface and the applica-

tion, as shown in (c). A callback mechanism allows the application to register a set

of routines with the user interface. At run-time, when an interesting event happens,

the interface calls the corresponding routine to inform the application for semantic

processing. This is basically a way of storing information about the application in the

user interface. However, the callback mechanism is not ideal because it introduces a

complicated procedural interface (often consists of hundreds of callback routines for

a non-trivial system) at the connection point, which is di�cult to comprehend and

maintain.

The MoDE connection model described in the next section supports the com-

munication required by direct-manipulation user interfaces while reducing the com-

plexity at the connection point.

3.5.2 The MoDE Connection Model

Hartson suggests two approaches to \connect" the user interface and the application

with su�cient communication [Har89]. One is to build more semantic power into

28



(a) No separation

Interface

Interface

User

User

Application

Application

(b) Strong separation

(c) Callbacks

User
Interface Application

Figure 3.8: Derivations of connection model.

27



mode B

mode A

Semantics

Interaction

Appearance

middleButtonClick

Op2

Op1

leftButtonClick mode C

Figure 3.7: Reusing the components in a three-dimensional design, as in MoDE.

new buttons. This is in contrast to the parameterized single dimension approach

where editing the code and recompiling are necessary to incorporate a new shape.

Generality

The generality of the user interface framework depends heavily on the choice of the

axes. The more axes a framework has and the more orthogonal these axes are, the

more mode-types it can span and the more general it is. In reality, it is di�cult to

de�ne fully orthogonal axes. One can only strive for axes that are as orthogonal as

possible. The Mode framework is an attempt to �nd one-such set of orthogonal axes

as a demonstration of the concept. An implementation of this framework is described

in the next section. New axes will evolve as new interaction techniques (for instance,

sound{discussed in Section 7.2) emerge.

3.5 Connection Model

The MoDE connection model provides solutions to problems of both strong separation

and poor support for linking the user interface and the application, discussed in

Sections 2.4.1 and 2.4.2, respectively.

26



Wanted:

Exist:

C

B

A leftButtonClick Op1

Op2middleButtonClick

middleButtonClick Op1

Appearance Interaction Semantics

Figure 3.5: The button example.

Button C

Button BButton AButton A Button B

Button C

Button A Button B

Button C

Figure 3.6: Possible inheritance structures for the button example.

In a single-dimensional design (such as that of the MVC framework), since

buttons A and B must be reused as a whole, one must create a new class for button

C and inherit from both A and B. Figure 3.6 illustrates three possible inheritance

structures. Starting from left to right, making C a subclass of A requires duplicating

the interaction portion of B in class C. Making C a subclass of B requires duplicating

the appearance and semantics portions of A. On the right, using multiple inheritance

requires one to disambiguate what should and should not be inherited from classes A

and B. None of these approaches is satisfactory.

On the other hand, since a three-dimensional orthogonal design allows the

attributes of the buttons to be reused individually, button C can be obtained simply

by reusing the appearance and semantics parts of button A and the interaction part of

button B, as illustrated in Figure 3.7. No new class is needed. In fact, by permuting

the three components, one can produce 8 di�erent buttons without creating any new

classes.

This is a good example of how inheritance, alone, does not guarantee e�ective

reuse whereas an orthogonal design does. Notice that the three-dimensional orthogo-

nal design is di�erent from parameterizing the appearance and interaction of a single

object. When a new appearance is invented (say a triangularly shaped display object),

the three-dimensional approach immediately gives four (i.e., a plane of) additional

25



"No" submode

"Yes" submode

Appearance

Semantics

Interaction

Figure 3.4: The three space for mode types. Two sample points are shown. One for

the \yes" button, the other for the \no" button. They share the same interaction

attribute.

Orthogonal design axes, such as those for MoDE, have several important implications

that can be seen when compared with one-dimensional designs.

It is possible to represent the same mode-types with just one axis in which

each type occupies a value on this single axis; however, this approach is less desirable

since creating a new point on the axis de�nes only one new type. In the case of a

three-space, described above, creating a new point on one of the axes de�nes a plane

of new types. In user interface construction, the one-dimensional approach would

represent, conceptually, lumping all three attributes of a mode together in a single

object. (Keeping them in three separate but closely coupled objects that can not

be reused individually, like what has been done in MVC framework, is essentially

the same.) In such an architecture, an attribute can only be reused when the whole

object can be reused. In the three-dimensional case, three attributes of a mode are

three independent objects, each of which can be reused independently of the other

two. The number of opportunities for each one of them to be reused are increased.

For example, assume an interaction technique library that contains two but-

tons. Button A is square-shaped and responds to a left mouse button click to perform

operation Op1. Button B is round and responds to a middle mouse button click to

perform operation Op2. What one would like to have is button C which is square-

shaped and responds to a middle mouse button click to perform operation Op1, as

shown in Figure 3.5.

24



Because the mode object provides a structure in which the three component

objects can be plugged and unplugged, a mode's appearance, interaction, and se-

mantics can be changed by replacing these component objects. For example, a mode

that highlights can be implemented to have two di�erent display objects: one for

normal state, the other for highlighted state. When the mode highlights, it replaces

the normal display object with the highlight display object. When it dehighlights,

the normal display object is switched back.

The standard interaction cycle of a mode is similar to that of the MVC

paradigm. The controller detects the user's input and tries to process it locally

(for example, to highlight the mode). When the user's action indicates a semantic

command, the semantic object is activated by the controller to process the command.

The semantic object may pass control to the application or to other semantic objects

to which it is connected, change the appearance and interaction of the mode, or sim-

ply update its own state. Notice that while a view in the MVC paradigm queries

the model and updates the display, a mode in the Mode framework provides only the

structure within which its three components collaborate to perform the interaction.

The MoDE framework can also be related to the �nite state machine (FSM)

approach, as discussed in Section 2.3.2, used for many years in describing and imple-

menting user interfaces. At the input level, a user interface created with MoDE can

be modeled with a FSM in which each mode on the screen corresponds to a state in

the FSM. Moving the cursor into a mode is equivalent to entering a state. Di�erent

states (modes) interpret the user's actions di�erently. MoDE goes beyond the FSM

approach, however, by separating each mode into three orthogonal component objects

and by providing a connection model based on the semantic objects.

3.4 A User Interface Component Space and Its Axes

In the above design, a mode is de�ned by its three attributes: appearance, interac-

tion, and semantics. By assigning an axis to each attribute, we can de�ne a three-

dimensional type-space for modes, as shown in Figure 3.4. Each point in the space

represents a di�erent mode type. The \yes" and \no" submodes of the dialogue box

example are shown as two points in the space. They have the same interactive be-

havior but di�erent appearance and semantics. This is reected in their sharing the

same value on the \Interaction" axis.

Orthogonality of the Axes

Axes that span a space are orthogonal if changing the value on one axis does not a�ect

the values on the other axes. That is to say, the axes are independent of one-another.

23



output to screen

component

component

component
from user
input

connect to 
the application

interaction

appearance

semantic

or other
semantic object

A mode object

Figure 3.3: The structure of a mode.

semantics, and the form of interaction it provides. For example, the \yes" submode

has the following de�nition:

Appearance: White background with black border of width one and a piece of

text (\yes") centered. The highlighted appearance is the inverse of the normal

appearance.

Semantics: Con�rm to remove the �le.

Interaction: Highlight when the left mouse button is pressed inside the mode; de-

highlight when the cursor leaves or the button is released. When the button is

released, triggers the semantic operation.

Notice that the \no" submode shares exactly the same interaction part with

the \yes" submode. The di�erences between them come from the appearance and

semantics parts.

In an object-oriented design, a mode is an object. The appearance, semantic,

and interaction components are objects, as well. They can be owned by mode ob-

jects, as shown in Figure 3.3. The mode object de�nes an internal protocol so that

the component objects can communicate with each other in a standard way. The

appearance component, called the display object, maintains the mode's appearance

and can display itself upon request. The interaction component, called the controller,

responds to the input from the user to interact with the user and triggers the semantic

actions. The semantic component, called the semantic object, supplies the semantics

of a mode. The term \supply" is used instead of \generate" because in MoDE, the

actual semantics are \generated" by the application but they are \supplied" to the

interface by the semantic object. Semantic objects can also connect to each other.

22



Do you really want to remove this file? 

NoYes

Figure 3.2: A dialogue box can be viewed as a mode with two submodes.

3.3 The Mode User Interface Framework

In this section, we de�ne the concept of mode as it is used in this research and the

framework in which modes are embedded. The working hypothesis of this research

is that this particular concept of mode can provide a uni�ed conceptual framework

that can be used to develop a wide variety of user interfaces. The MoDE system was

built to test this hypothesis.

In earlier discussions of modes, the emphasis was on the di�erent interpreta-

tions of user's actions with respect to the particular contexts for those actions. In our

discussion of mode, we place equal emphasis on appearance, semantics, and interac-

tion. More speci�cally, the basic building block of user interfaces in our approach is a

mode. A mode is a composite de�ned by its three attributes: appearance, interaction,

and semantics. It is distinguished by an area on the screen in which most likely

at least one of its attributes is di�erent from those of other modes in surrounding

areas. The Mode framework includes the de�nition of modes and provides rules of

composition. Thus, a user interface might be composed of a group of hierarchically

structured modes. A mode in such a structured interface could contain other modes

as submodes. Any given mode, however, would be a submode of only one mode { its

\supermode." The set of modes in a structured interface forms a hierarchy.

To illustrate, the dialogue box shown in Figure 3.2 can be thought of as a mode

with two submodes: a \yes" submode and a \no" submode. The yes and no buttons

(modes) highlight themselves when the left mouse button is pressed within them, and

they dehighlight themselves when the cursor moves away or the left mouse button is

released. Their behavior is di�erent from that of their super-mode (the containing

dialogue box) which does not respond to a left mouse button press. The text in the

dialogue box is not a mode. It a�ects the appearance of the dialogue box, but it does

not form an area that provides a di�erent interpretation of the user's input.

As mentioned above, each individual mode is de�ned by its appearance, its

21



which the facilities of other programs are unavailable to him. This limitation has

been eliminated in multi-window systems that allow several programs (running in

di�erent windows) to be active at the same time. The user can switch back and

forth between windows to obtain services from di�erent programs. Thus, advances

in display technology have eliminated the problems with preemptive modes; however,

the same is not true for command modes.

Command modes interpret the same user input di�erently depending on the

state of the system. User interfaces that include several command modes have been

criticized because they make it hard for the user to determine:

� which mode he is in,

� how he got into the mode,

� what operations are allowed in the mode,

� and how to get out of the mode.

Since the interpretation of key strokes and other user input depends on the mode or

state of the system, unexpected results can be generated when the user loses track of

the current mode.

3.2.2 Direct-manipulation Interfaces are Modal

Most of the above problems were caused not by the command mode design, itself, but

by its realization in text-based interfaces. More recently, many direct-manipulation

interfaces have actually used command mode designs without causing problems and,

possibly, without their designers realizing it.

In a direct-manipulation interface, moving the cursor to point to a di�erent

object is, in e�ect, a command to change mode, because once the cursor is moved,

the range of acceptable inputs is reduced and the meaning of each of those inputs is

determined [Jac86]. Thus, direct-manipulation interfaces actually divide the screen

into modes, although they appear to be modeless since these modes are always visible

and their contexts are entered and left by moving the cursor. Users are frequently

unaware that they are in a di�erent mode since all operations allowed in a mode are

presented by menus and dialogue boxes that can be invoked with simple, consistent

actions (for example, a button click). Thus, all four disadvantages of modal interfaces

stated above (potentially) disappear in icon-based direct-manipulation interfaces.

20



controller pair associated with it. For example, the FillInTheBlank model has the

FillInTheBlankView and the FillInTheBlankController. When this is done, the use

of a controller, for instance, is limited to the particular view and model with which

it is associated. Assigning a di�erent controller to a view does not change the inter-

action but often breaks the code. From the implementer's point of view, it makes

little sense to separate the view and controller into two modules. Consequently, some

implementations lump the two parts together. As explained in Section 3.4, this often

often hinders the reuse of software components and produces awkward inheritance

structures.

Although the MVC concept has its problems, its principle of dividing user

interface components into three parts can still be used to guide the design of orthogo-

nal interface components. While object-oriented inheritance alone does not guarantee

good reuse of user interface components, an orthogonal design of those components,

along with inheritance, can facilitate reusability. In addition, orthogonality results

in a more general and versatile system for building user interfaces. The following

sections will explain why and introduce an orthogonal design adopted by MoDE.

3.2 The Concept of a Mode-Based User Interface

User interfaces that include more than one mode are generally considered less desirable

than modeless ones[Tes81]. This section provides a di�erent point of view and explains

why the term mode was chosen to express our central concept.

3.2.1 What is a Mode?

The campaign to eliminate modes from interfaces was started in 1973 by Larry Tesler.

He de�nes a mode as follows:

A mode of an interactive computer system is a state of the user interface

that lasts for a period of time, is not associated with any particular object

1

,

and has no role other than to place an interpretation on operator input.

[SIKV82]

Tesler describes two major types of mode: preemptive mode and command

mode [Tes81]. Running a program puts the user into a preemptive mode during

1

The author disagrees. Even though a text editor is opened on an empty �le, its modes are still

associated with the empty �le object.

19



Controller
User input Display output

Implicit links

View

Model

Figure 3.1: The Model-View-Controller framework.

views. The superview/subview hierarchy provides windowing behavior such as

clipping and transformations.

Controller: The controller provides the interface between its associated model/view

and the user input. The controller also schedules interactions with other con-

trollers.

These three parts of a user interface are interconnected as shown in Figure 3.1.

The standard interaction cycle is this:

1. The user performs some input action and the active controller responds by

invoking the appropriate action in the model.

2. The model carries out the prescribed operation, possibly changing its state, and

broadcasts to all its dependent views (through the implicit links) that it has

changed.

3. Each view can then query the model for its new state and update its display, if

necessary.

Many user interface systems are based on or inuenced by the SmalltalkModel-

View-Controller paradigm [Ale87, Bin88, KP88, Har89, Ste88, vdM89]. Although the

MVC concept provides a convenient object-oriented division at the abstract level,

the division is rather hard to implement. Most implementations of the MVC con-

cept have view and controller pairs associated with models. In Smalltalk, the MVC

framework is implemented as three abstract superclasses (namely Model, View, and

Controller). Numerous subclasses of the three abstract superclasses implement the

interaction techniques used in Smalltalk. Almost every model has a special view and

18



Chapter 3

Concepts

In order to achieve the research goals listed at the end of Chapter 2, MoDE employs

several new concepts. This chapter introduces these concepts. The next chapter

describes how these concepts were realized in MoDE.

Since MoDE is based on the MVC paradigm, Section 3.1 gives a brief overview

of the MVC paradigm and problems associated with it. Section 3.2 provides a novel

perspective on direct-manipulation interfaces and explains the concept of \mode"

that is central to MoDE. Section 3.3 extends the concepts introduced in Section 3.2

and describes the general framework on which MoDE is based. Major components of

a mode and their inter-relationship are also discussed. In Section 3.4, a type-space for

modes is introduced and the orthogonal properties of mode components are discussed.

Section 3.5 describes the MoDE connection model, extending the concept of semantic

object introduced earlier.

3.1 MVC and Its Problems

The Model-View-Controller (MVC) [Ada88, KP88] paradigm was developed by the

people who implemented the Smalltalk user interface in order to isolate functional

units in the user interface. It divides the responsibility for a user interface into three

types of objects.

Model: The model represents the data structure of the application. It contains or

has access to information to be displayed in its views.

View: The view handles all graphical tasks; it requests data from the model and

displays the data. A view can contain subviews and be contained within super-

17



UIMSs only focus on the implementation phase of user interface development and

provide few, if any, tools that can be used in other phases (speci�cation, design and

maintenance). As Miller pointed out, the important problems of interface design and

development can only be solved with tools and working styles that address the whole

interface problem, from initial task analysis and design through system maintenance

[Mil88]. And, they must do so in an integrated way.

2.5 Research Goals

While the research project described here does not address all of these issues, it

addresses many of them. The overall approach was to develop a new proof-of-concept

UIMS that includes:

� A decentralized connection model that provides both su�cient communication

between the user interface and the application as well as low complexity for the

developer.

� Direct manipulation speci�cation and control for the interface developer for

most operations.

� An open system architecture which allows new styles of interaction to be created

easily and incorporated into the system for reuse.

� A coherent conceptual model of the user interface that facilitates speci�cation,

design, maintenance phases, as well as implementation.

These issues will be discussed throughout the remaining chapters in relation to

the conceptual basis of the Mode Development Environment (MoDE) and its design

and use.

16



Both alternatives are undesirable since they reduce program modularity [Mil88].

Thus, new approachs are needed to achieve valid separation.

2.4.2 Poor Support for Linking User Interface and Applica-

tion

Conventional UIMSs provide little support for linking the generated user interface

with the application. Most either provide a procedural interface and leave all the

responsibility to the programmer (as in most of the interface technique builders) or,

slightly better, provide callback mechanisms (as in the X11 toolkit and the NeXT

Interface Builder). For the latter, a typical callback mechanism allows the program-

mer to associate callback routines, which the UIMS calls in response to user actions,

with the user interface objects. This approach can be viewed as a way of storing

knowledge about the application (the routines) in the interface. However, callback

mechanisms do not provide a satisfactory solution to the problem of separation since

they require the application to determine which user interface object is generating

the calls. This imposes a large surface area

1

at the callback point which not only

blurs the module boundary of the system but also makes it expensive to support �ne

grain control [Mye87a].

.

2.4.3 Limited Capability

UIMSs are limited in the type of the interfaces they can create [Mye87b]. Most UIMSs

promote one speci�c style of interaction. It is very hard using them to generate user

interfaces that are not in the style provided. For example, with MacApp it is almost

impossible to implement an interface that uses pop-up menus.

2.4.4 Little Support Beyond Coding

When one builds a good interface, one doesn't just build an interface { one �rst de-

termines how the user will think about and interact with the application domain.

Thus, the semantics of the application strongly a�ect the design of the user inter-

face. Similarly, the kinds of information and operations needed to support the user's

interaction with the system strongly a�ect the implementation of the system. Most

1

Surface area is de�ned as the number of things that must be understood and properly dealt

with for one programmer's code to function correctly in combination with another's [Cox86].

15



the semantic commands that the interaction supports. The presentation of the pro-

totype interface is then re�ned using interface editors. Foley [Fol89] developed a

knowledge-based UIMS that accepts description of the interface in terms of objects,

actions, attributes, and pre- and post-conditions associated with the actions. The sys-

tem performs consistency and completeness checks, and suggests alternative design

strategies. It also provides a number of transformations to the interface speci�cation

in order to create new user interface designs which have the same function as the

original design, but which provide a di�erent view of the function for di�erent groups

of users. Higgens [Hud86] generates support for direct manipulation and Undo/Redo

by having the developer de�ne the application data in a special semantic data model

(attributed graphs).

2.4 Problems with UIMSs

Although UIMSs provide substantial help for building user interfaces, none provides

all of the features that developers need or want. This section discusses some of the

more important limitations.

2.4.1 Strong Separation

Most UIMSs are based on the assumption that the user interface can be strongly

separated from the application. This separation is both physical (separate code �les)

and logical (knowledge one component has of another). Separation is attractive since

it promises a cleaner and more modular architecture, the possibility of a single user

interface for multiple applications (or vice-versa), and faster interaction with the user.

Unfortunately, these promises have not been kept in practice. Consider the following

dilemma: in direct-manipulation interfaces, semantic information is used extensively

for controlling feedback, generating default values, checking errors, and recovering.

For example, in the Apple Macintosh user interface, an icon may be dragged with the

mouse. When it is dragged over other icons that can contain it, such as a �le folder,

those icons are displayed in reverse video. This requires semantic feedback from the

application (derived from the types of the icons) while the mouse is tracking. Full

separation results in:

� the duplication of large parts of the application code in the user interface, or

� ad hoc programming to provide the necessary communication between the ap-

plication and the user interface, thus, paradoxically eliminating the separation.

14



discusses systems that are speci�cally graphics-oriented.

2.3.3 Graphical Layout

Graphical layout UIMSs can also be classi�ed as \glue" systems. They are discussed

separately because they allow interaction techniques to be speci�ed directly using a

mouse. This special feature makes them easy to use. However, some properties of

an interface are not easily speci�ed by visual representations. The limited expressive

capability of the mouse either places a serious restriction on the function of these

systems or requires further programming.

Menulay [BLSS83] allows the designer to place text, graphical potentiometers,

iconic pictures, light buttons, etc. on the screen and see exactly what the user will

see when the application is run. Trillium [HC86] supports the design of user interface

panels for copier machines. BLOX [Rub82], DMS [HH86], GRINS [ODR85], GUIDE

[Gra86], and LUIS [MBW89] provide graphical editors for specifying the layout of

the interface components. Prototyper [Sme87] allows rapid design, prototyping, and

testing of interfaces speci�cally for the Macintosh. Cardelli's UIMS uses direct ma-

nipulation [HHN86, Shn83] to specify geometric constraints among screen objects

[Car88]. The NeXT Interface Builder [NeX88] combines the power of object-oriented

programming and an easy-to-use direct-manipulation front-end to provide fast cre-

ation of direct-manipulation user interfaces.

2.3.4 Application Semantics First

Unlike most other UIMSs which start the construction of the user interface by spec-

ifying the user interface, the UIMSs described in this section attempt to generate

the user interface from the application's semantics. Recognizing that the data model

underlying an interactive system is important in shaping the overall system [AYM88],

these systems create a prototype interface by transforming a speci�cation of the appli-

cation's semantics. The designer then can modify the prototype interface to improve

it. A common di�culty with this approach is that the UIMS used to generate the pro-

totype often has no knowledge about the modi�cation. Once the prototype interface

is modi�ed, the UIMS can no longer be used to work on the interface.

For example, the Control-Panel Interface [FJ87] creates graphical interfaces for

control panels and image-processing applications based upon procedure's parameter

types. The same approach is adopted by Peridot [Mye88]. MIKE [Ols86], Mickey

[Ols89] and UofA [SG89] generate a prototype user interface from the de�nition of

13



Event languages In this model, input devices are viewed as sources of events. Each

input device generates one or more events when the user interacts with it. The

events are placed on a queue when they are generated. Event handlers remove

the events one at a time from the queue and process the event by generating

as output other events, by changing the state of the dialogue component, or by

calling the application's semantic routines. One of the main advantages of the

event model is its capability to describe multithreaded dialogues in which the

user can be involved in several separate or communicating dialogues at the same

time, such as, editing two �les. The user is free to switch from one dialogue to

another at any point in the interaction. Several UIMSs have been built that

exploit this approach [Gre85, Hil86, TaMSW86, FB87].

Object-oriented languages Systems based on object-oriented languages can han-

dle highly interactive, direct-manipulation interfaces because there is a com-

putational link (via message sending) between the input and the output that

the application can modify to provide semantic processing. GWUIMS [SHB86],

MacApp [Sch86b, Sch86a], the NeXT Application Kit [NeX88], and ICpak 201

[Ste88] are typical systems. Various forms of object dependency can also provide

consistency among di�erent views of the same data in the interface.

Special purpose languages Several systems have developed new special-purpose

languages for dialogue speci�cation [Apo88, HSL85, Kas85, KLR89, ABB89,

Bin88, Gia88, SH89, Ols89, WR82]. Since they are intended for user interface

construction and do not have the additional complexity required for general

purpose programming languages, they are somewhat easier to use. On the

other hand, they require the interface developers to learn a new programming

language. Also, their textual nature is not convenient for describing graphical

user interfaces. Several of them have developed graphical aids on top of their

textural languages to cope with this problem.

Data ow Several visual programming systems based on the concept of data ow

[Smi88, IWC

+

88] have been used to develop user interfaces. The data ow

model is also used to connect the user interface with the application [DLS89].

Thus, constructing a data ow diagram is equivalent to constructing a user

interface program. Since the data ow diagram is a two-dimensional graphical

notation, it is well-suited for visual programming.

Constraint based Constraints can be used to map between application objects and

graphical objects. They can also maintain the consistency among multiple view

of data. Systems like ThingLabII [MBFB89], Coral [SM88], CWS [EL88], and

the Filter Browser [EMB87] use various forms of constraints.

The systems introduced in the above seven categories provide a wide variety of

methods to combine software components into user interfaces. The following section

12



(graphical potentiometers), and buttons. It also infers parameterized procedures from

the designer's actions to provide run-time behaviors of the interaction technique.

2.3.2 \Glue" Support

Most UIMSs concentrate on combining and sequencing interactive techniques after

they have been created; this is called \gluing." However, they di�er widely in how they

approach the task. Green originally identi�ed three principal approaches: transition

networks, context-free grammars, and event languages [Gre86]. More recently, four

additional methods have been suggested. They are object-oriented languages, special

purpose languages, data ow models, and constraint based systems. Distinguishing

characteristics of each of these seven groups are discussed below.

Transition networks (Also called �nite state machines) The transition network

model is based on transition diagrams A transition diagram consists of a set of

states and a set of arcs. The states represent the states in the dialogue between

the user and the computer system. The arcs in the diagram determine how the

dialogue moves from one state to another. The dialogue will move from state A

to state B if there is an arc between the two states labeled by the action the user

performed. Di�erent forms of transition networks, including recursive transition

networks (RTN) and augmented transition networks (ATN), have been used or

proposed as bases for dialogue control [Edm81, KP83, SBK85, Was85, YH85,

Jac86, MVS88, Wel89, LIBY89]. EDGE [KC88] and State Trees [Rum88] both

use tree-like structures, rather than general graphs, to manage the complexity

of the state diagram.

Systems that support menu hierarchies and networks [Kas82, AMY87, Con87]

can also be thought as a form of the transition networks, where each menu is

a state and the selection of a menu item moves the system to the next state

(another menu).

Context free grammars The motivation for this model is the view that human-

computer interaction is a dialogue, as in human-human communication. In

the case of natural languages, a grammar describes the language used by the

participants in the dialogue. The natural extension of this idea is to use a

grammar to describe the dialogue between the user and the computer. Systems

that have used context-free grammars include Syngraph [OD83] and Dialogue

Cells [tD85]. As Myers has noted, grammar-based systems are good for textual

command languages, but are generally inadequate for graphics-based direct ma-

nipulation interfaces [Mye89a].

11



Some of the more important ones include GROW [Bar86], GARDEN [Rei87], CLAM

[CCM87], Glazier [Ale87], TICS [GE87], ThinkerToy [Gut87], Coral [SM88], ET++

[WCM88], and InterViews [LVC89].

Due to inheritance, these systems all have higher reusability than traditional

non-object-oriented systems. Still, with the orthogonality concept introduced in Sec-

tion 3.4, reusability can be increased further.

2.3 User Interface Management Systems (UIMS)

Built on top of window management systems and programming facilities (such as

object-oriented programming languages), user interface management systems [OBE

+

84]

provide support beyond the graphics domain to further facilitate user interface de-

velopment.

UIMSs have been characterized as analogous to database management systems

(DBMS) [Kas82]. Database management systems abstract away the low level details

of physical I/O and present a uniform abstract programming interface to data man-

agement facilities. In the same way, UIMSs abstract away the low level details of the

user interface and provide a uniform programming interface to them. In doing so,

they also provide consistency in the resulting user interfaces.

Because of the large amount of work being done in UIMSs, this comparative

discussion is divided into the four sections. Section 2.3.1 describes UIMSs for building

interactive techniques. In Section 2.3.2, UIMSs that \glue" the interactive techniques

together are discussed. Section 2.3.3 provides an overview of UIMSs that use visual

representations for input. Section 2.3.4 introduces a new approach to UIMS that

builds the interface from the semantics of the application.

2.3.1 Interactive Technique Builders

An interaction technique is a way of using a physical input device (such as mouse,

keyboard, tablet, or rotary knob) to input a value (such as a command, number, loca-

tion, or name) and, subsequently, to provide some form of feedback to the user. Sev-

eral UIMSs have been built to help developers create interaction techniques. Squeak

[CP85], a textual language for programming mouse interfaces, exploits concurrent in-

put from di�erent input devices. Panther [Hel87] supports menus, forms and sliders

through tabular speci�cation. Peridot [Mye88] lets the designer directly manipulate

primitives (rectangles, circles, text, and lines) to construct menus, scroll bars, sliders

10



Windows [Mic85] provide a variety of useful abstractions (windows, menus, scrollbars)

in the graphical domain. The Andrew system [MSC

+

86] introduced an asynchronous

communication protocol to support distributed environments. The X Window Sys-

tem [SG86] addresses the need for network transparency and high portability and

is becoming the most popular window system. Not only is X supported by most of

the hardware vendors, it is also accessible from many programming languages. For

example, CLUE [KO88] provides a connection between X and the Lisp world. X is

also accessible from C, Ada, Fortran, and C++.

Instead of a set of procedures, NeWS [Sun87] provides a programming language

(PostScript) that serves as an interface between client programs and servers. Clients

of NeWS can send PostScript programs to the servers and ask the servers to execute

the programs. This improves the exibility of the system and removes the need for

high volume communication between server and clients. With PostScript, NeWS also

discards the concept of pixel by using a mathematical model to describe displayable

objects. Many believe that NeWS is technically superior to X [RSD

+

87].

Although diverse, window management systems provide a �rm foundation for

user interface development. More and more user interfaces will be built on top of

speci�c window management systems and will rely on them to provide portability to

di�erent hardware platforms.

Many window management systems are accompanied by toolkits that provide

libraries of interaction techniques. (For example, the X Toolkit [MA88] of the X

Window System.) A programmer uses an interface toolkit by writing code to invoke

and organize the interaction techniques. The disadvantages of using toolkits are that

they provide limited interaction styles and are often expensive to create and di�cult

to use.

2.2 Object-Oriented Programming

Object oriented programming is important for interface developing since it provides a

paradigm that helps control the complexity of software through encapsulation. It not

only supports \data-type independent algorithms" [Sch88b] but also promotes reuse

of existing software by inheritance [Mey87].

Objects provide the user interface developer with a natural unit with which to

organize and manage the display. The ability to modify and reuse existing components

provided by object-oriented programming makes it possible to generate prototypes

to evaluate user interface designs without extensive programming [Fre87]. Many

user interface toolkits/environments have been built using object oriented techniques.

9



Chapter 2

Background

User interface development is currently a very active area of research. Work relevant

to the project described here include the following:

� window management systems,

� object-oriented programming,

� and user interface management systems.

2.1 Window Management Systems

Window management systems (or Window Managers) provide the bases on which

modern user interfaces are built [Fol86]. They allocate regions of display to client

programs and con�ne the clients' output to the allocated regions. They also allo-

cate input devices (e.g., keyboard, mouse) to clients and route input events to the

appropriate client program. While di�erent systems address di�erent programming

problems and provide varying capabilities, they all provide an indispensable layer

between user interface software and their hardware platforms. This section provides

a historical perspective of window management systems.

Serious research interest in window management systems began with the Model-

View-Controller (MVC) paradigm [KP88] for Smalltalk [GR83, Tei86]. The MVC

paradigm divides a user interface into three parts. The model provides the semantics

of the underlying application, the view is responsible for the visual aspects, and the

controller interacts with the user. In the Smalltalk implementation, View provides

many of the characteristics of a window. Systems like SunView [Sun86] and Microsoft

8



One particularly unusual feature of MoDE is its capability of supporting arbi-

trarily shaped objects. The oddly shaped subwindow has three nodes in it. The user

is dragging one of the nodes over the trash icon in another window (Level of DM).

The trash icon opens to provide semantic feedback. Rubber-band lines are drawn

from the dragged node to both node Odd1 and node Odd3 to show the connection.

Notice, also, that the oddly shaped subwindow has a hole in it through which the

user can see and work with objects (for example, the node Below1) underneath the

window. MoDE also supports semi-transparent windows as shown in the right-half

of the oddly shaped subwindow, through which node Below3 is visible.

Thus, MoDE provides an e�ective environment for user interface development.

It addresses the issues of generality, the connection between user interface and appli-

cation, and support for development activities beyond coding.

1.4 Organization of the Thesis

The next chapter reviews research relevant to this thesis and identi�es problems cur-

rently found in UIMS research. Chapter 3 describes the mode concept. Chapter 4

describes the realization of the MoDE system and discusses the orthogonality ex-

hibited in its design. Chapter 5 discusses the use of MoDE as an interface building

tool. Chapter 6 evaluates the generality and productivity of MoDE. Conclusions,

contributions and future directions for research are discussed in Chapter 7.

1.5 A Note to the Reader

The videotape discussed in the Appendix C is an integral part of this dissertation.

The reader is encouraged to view the tape before reading further.

7



Figure 1.3: Sample user interfaces created with MoDE.

6



Figure 1.2: Interactive technique library.

objects out of the interactive technique library (the right-hand window of Figure 1.1)

and pasting them together. Interface objects are then connected to their respective

semantic objects. Semantic object are then connected to application objects that

provide functional support for the selected interface object or operation. Semantic

objects can also be connected to one another to provide feedback or response without

engaging the application, such as highlighting an object when touched by the mouse-

controlled cursor.

Visual representation of interface, semantic, and application objects can all be

created and manipulated directly. In Figure 1.1, the user has �nished the layout and

connection of the interface (which is an upside-down window labeled My window) and

is asking the system to create a subclass of the aBackground semantic object. Since all

interfaces created with MoDE are immediately testable at any stage of development,

there is no need for a separate test state.

After the interface is created and tested, it can be promoted into the library

for future use, or it can be reused as a component in a more complex construction. In

Figure 1.2, the My window interface has been promoted into the interactive technique

library and is represented by an icon. The user can then store it in a �le and share

it with other user interface developers.

Figure 1.3 shows several sample interfaces created with MoDE that illustrate

some of its more unusual capabilities. The scroll bar in the top left window (Roam

demo) scrolls the picture continuously. The top right window (Menu demo) has three

types of menus: title-bar menu, tear-o� menu, and pop-up menu (not displayed).

Menu items can be text, foreign characters, bitmap or animated pictures. The lower

left window (For Barry) demonstrates the system's capability to incorporate scanned

images and text editors. The largest window (OddShape Window) contains two sub-

windows; both allow the user to create networks of nodes.

5



Figure 1.1: Using MoDE.

maintainers. Interface designers can use it to rapidly create interfaces and to test

the designs against end users to collect feedback. System programmers can use its

programming interface to develop applications that support various user interfaces

and to connect them together. System maintainers can use MoDE to understand

a system and to navigate through the relevant portions of the interface and the

application. Sections 5.2 and 5.3 provide more details.

An informal experiment suggests that MoDE increases the productivity of its

users. Two groups of subjects were asked to produce the same interface. On group

used MoDE exclusively while the other group used whatever tools they liked except

MoDE. The group using MoDE completed the assignment signi�cantly faster than

the other group. Section 6.2 reports this experiment.

1.3 MoDE in Use

Since the UIMS issues examined by this research were addressed in the proof-of-

concept system, MoDE, this section gives a taste of how MoDE is used and the kinds

of interfaces it can be used to create

1

. It is included here to provide an intuitive frame

of reference for the more general discussion of issues that follows.

The user of MoDE begins the process of building an interface by dragging

1

A more complete example is shown in the videotape appendix.

4



can be built is greatly increased. Experience with MoDE suggests that it is this or-

thogonal design that contributes most to reuse of interface components, rather than

object-oriented inheritance alone.

Connection between user interface and application

Separating the user interface from the application produces a cleaner and more modu-

lar system architecture. Current methods of separation often limit the communication

between the two and, as a consequence, do not support direct-manipulation interfaces

very well.

MoDE provides an intermediate layer of semantic objects that connects the user

interface and the application. Each interface component is connected to a semantic

object which, in tern, can be connected to the application or to other semantic objects.

Objects in this domain have knowledge of both the user interface and the application.

They form a layer that insulates the e�ects of changes from both sides.

Support beyond coding

Most UIMSs only focus on the implementation phase of user interface development

and provide very few, if any, tools that can be used in other phases, such as design,

testing and maintenance (discussed in Sections 4.2.6 and 5.2).

The mode concept provides an informal framework in which the user inter-

face developer can specify the interface conceptually from the end user's point of

view. This framework also provides guidelines to help decompose an interface into

components during the design phase.

During debugging and maintenance, the MoDE user can interrupt a running

interface at any point and inspect it. This capability together with the regularity

enforced by the mode concept make it easy for an interface system maintainer to

understand the interface and to locate a speci�c component for modi�cation.

1.2 Major Results

MoDE can be used to produce a wide variety of interfaces. MoDE was used to generate

test interfaces that simulate the major components of the interactions implemented

in Macintosh, NeXT, and SunView (discussed in Section 6.1.1). MoDE was also used

to generated its own interface. Because of its self-creating nature, the MoDE interface

can be edited with itself. Thus, it provides high degree of freedom to user interface

developers.

MoDE can be used by interface designers, system programmers, and system

3



From this perspective, everything on the screen is a mode. Thus, mode is the

only building block necessary for building a user interface. The task of designing and

implementing an interface is simpli�ed into identifying the modes in the interface and

composing them together.

To demonstrate that this concept of mode can be used as the conceptual basis

for an e�ective user interface management system (UIMS), the Mode Development

Environment (MoDE) was developed. In addition to this demonstration, MoDE also

addresses several limitations found in most UIMSs. In the section that follows, these

limitations are discussed briey and MoDE's attempt to address them outlined.

1.1 Problems and Solutions

MoDE addresses several important problems faced bymost user interfacemanagement

systems (UIMSs). These include:

� generality,

� the connection between user interface and application,

� and support for development activities beyond coding.

Generality

Many UIMSs are limited in the look and feel of the interfaces they can be used to

create. It is very hard to generate user interfaces not in the style provided. There

are two major reasons for this. First, many UIMSs have a �xed library of interface

components. The interfaces that can be built with these systems are limited to those

that can be composed from components in the �xed library. Second, most UIMSs are

not orthogonal in design with respect to components: some components can be used

with other components from the library while others cannot be combined (discussed

in Section 3.4).

To address the �rst limitation, MoDE makes no distinction between system-

provided components and user-created components. Consequently, new interface com-

ponents can easily be included into the library. To address the second limitation,

MoDE provides orthogonality with respect to interface components. Since MoDE

separates appearance, interaction, and the semantics of a component into three in-

dependent objects, new interface components can easily be created by constructing

new combinations of these objects. Thus, the number of possible components that

2



Chapter 1

Introduction

Creating a good user interface for a system is a di�cult task. User interface software

is often large, complex, and di�cult to debug and modify. It often represents a

signi�cant fraction of the code, frequently ranging from 40 to 60 percent [Fol88].

Good interfaces that are easy to use frequently require several cycles of designing,

development, testing, and re�ning. Consequently, better tools are needed for all

aspects of user interface development, ranging from support of complex programs to

rapid prototyping.

This thesis explores a particular concept of mode that can provide a uni�ed

conceptual framework for user interfaces and can lead to an e�ective implementation

environment for developing a rich variety of user interfaces. In this section, the

concept of mode is introduced; it will be de�ned rigorously and discussed in detail in

Chapter 3.

Interfaces customarily have states that govern the interpretation of user ac-

tions. These are commonly called modes. Some user interface developers have at-

tributed user confusion to the very presence of modes in interfaces and have de�ned

the ideal interface as one which has no modes [SIKV82, Tes81]. This dissertation

undertakes to show that modeless interfaces are not desirable and may be impossible.

If one embraces and formalizes the concept of mode, it serves as a unifying,

general, and powerful concept with which to de�ne interfaces. In this dissertation, a

mode is still a state. It is the building block of user interfaces. A mode is de�ned by

its three attributes: appearance, interaction, and semantics. It is distinguished by an

area on the screen in which at least one of its attributes is di�erent from those of the

modes in its surrounding areas. Modes can be composed to form more complicated

modes.

1



7.1 Make MoDE a production system. : : : : : : : : : : : : : : : : : : : : 69

A.1 An EHP sandwich. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86

A.2 Loop merging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

xv



4.2 Clipping capability is essential to the interaction in a mode that is

partially obscured by other modes. : : : : : : : : : : : : : : : : : : : : 34

4.3 A simple eventResponses table. : : : : : : : : : : : : : : : : : : : : : 35

4.4 The relationships among the four kernel classes. : : : : : : : : : : : : : 39

4.5 A simple example. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

4.6 The responsibilities are partitioned di�erently in the Mode framework

than in the MVC framework. : : : : : : : : : : : : : : : : : : : : : : : 44

5.1 Editing the appearance of a mode. : : : : : : : : : : : : : : : : : : : : 47

5.2 Showing the semantic object for the display window. : : : : : : : : : : 47

5.3 System requests permission to create new instance variable for the

connection. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

5.4 Inspect the semantic object. : : : : : : : : : : : : : : : : : : : : : : : : 49

5.5 The default action message is buttonPushed:. : : : : : : : : : : : : : 49

5.6 The system shows a list of the messages understood by the semantic

object of the display window. : : : : : : : : : : : : : : : : : : : : : : : 49

5.7 The interface and the application are fully connected. : : : : : : : : : 50

5.8 The binary desk calculator is promoted into the interaction technique

library. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

5.9 The calculator is put into a window. : : : : : : : : : : : : : : : : : : : 51

5.10 The Mode Composer is used to edit itself. : : : : : : : : : : : : : : : : 55

6.1 The three axes span the space of mode-types. : : : : : : : : : : : : : : 58

6.2 A picture of the window to be built. : : : : : : : : : : : : : : : : : : : 62

xiv



List of Figures

1.1 Using MoDE. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.2 Interactive technique library. : : : : : : : : : : : : : : : : : : : : : : : 5

1.3 Sample user interfaces created with MoDE. : : : : : : : : : : : : : : : 6

3.1 The Model-View-Controller framework. : : : : : : : : : : : : : : : : : 18

3.2 A dialogue box can be viewed as a mode with two submodes. : : : : : 21

3.3 The structure of a mode. : : : : : : : : : : : : : : : : : : : : : : : : : : 22

3.4 The three space for mode types. Two sample points are shown. One

for the \yes" button, the other for the \no" button. They share the

same interaction attribute. : : : : : : : : : : : : : : : : : : : : : : : : : 24

3.5 The button example. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

3.6 Possible inheritance structures for the button example. : : : : : : : : : 25

3.7 Reusing the components in a three-dimensional design, as in MoDE. : 26

3.8 Derivations of connection model. : : : : : : : : : : : : : : : : : : : : : 27

3.9 A decentralized connection model. : : : : : : : : : : : : : : : : : : : : 29

4.1 Correspondence between the axes and the implementation. : : : : : : 33

xiii



B.4.8 attribute editor : : : : : : : : : : : : : : : : : : : : : : : : : : 119

B.4.9 class methods for: instance creation : : : : : : : : : : : : : : : 119

C Videotape 120

C.1 Sample Interfaces Built with MoDE : : : : : : : : : : : : : : : : : : : 120

C.2 MoDE in Use : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 121

xii



B.2.11 class methods for: access : : : : : : : : : : : : : : : : : : : : : 112

B.2.12 class methods for: initialize : : : : : : : : : : : : : : : : : : : : 112

B.3 MDisplayObject Class : : : : : : : : : : : : : : : : : : : : : : : : : : : 112

B.3.1 transforming : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113

B.3.2 initialize-release : : : : : : : : : : : : : : : : : : : : : : : : : : 113

B.3.3 accessing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113

B.3.4 inversion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 114

B.3.5 displaying : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 115

B.3.6 bu�ering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 115

B.3.7 testing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 116

B.3.8 display box access : : : : : : : : : : : : : : : : : : : : : : : : : 116

B.3.9 copying : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 116

B.3.10 class methods for: instance creation : : : : : : : : : : : : : : : 116

B.4 SemanticObject Class : : : : : : : : : : : : : : : : : : : : : : : : : : : 116

B.4.1 access : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 117

B.4.2 initialize-release : : : : : : : : : : : : : : : : : : : : : : : : : : 117

B.4.3 mode attaching : : : : : : : : : : : : : : : : : : : : : : : : : : 117

B.4.4 drag support : : : : : : : : : : : : : : : : : : : : : : : : : : : : 118

B.4.5 Mode-initializations : : : : : : : : : : : : : : : : : : : : : : : : 118

B.4.6 copying : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119

B.4.7 connection model support : : : : : : : : : : : : : : : : : : : : 119

xi



B.1.15 visibility : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 101

B.1.16 bordering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 101

B.1.17 bu�ering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102

B.1.18 sharedStyle-highlight : : : : : : : : : : : : : : : : : : : : : : : 103

B.1.19 indicating : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103

B.1.20 sizing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 104

B.1.21 semObj access : : : : : : : : : : : : : : : : : : : : : : : : : : : 105

B.1.22 copying : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105

B.1.23 class methods for: initialization : : : : : : : : : : : : : : : : : 105

B.1.24 class methods for: instance creation : : : : : : : : : : : : : : : 105

B.2 MController Class : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105

B.2.1 access : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 106

B.2.2 event handling : : : : : : : : : : : : : : : : : : : : : : : : : : : 107

B.2.3 sharedBehavior-resize : : : : : : : : : : : : : : : : : : : : : : : 107

B.2.4 sharedBehavior-move : : : : : : : : : : : : : : : : : : : : : : : 108

B.2.5 sharedBehavior-indicating : : : : : : : : : : : : : : : : : : : : 109

B.2.6 sharedBehavior-link : : : : : : : : : : : : : : : : : : : : : : : : 110

B.2.7 sharedBehavior-menu : : : : : : : : : : : : : : : : : : : : : : : 110

B.2.8 Interrupt handling : : : : : : : : : : : : : : : : : : : : : : : : : 111

B.2.9 copying : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 111

B.2.10 class methods for: instance creation : : : : : : : : : : : : : : : 112

x



A.4.2 When to Switch : : : : : : : : : : : : : : : : : : : : : : : : : : 86

A.4.3 Sandwiching : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86

A.4.4 How to Switch: Case EHP : : : : : : : : : : : : : : : : : : : : : 86

A.4.5 How to Switch: Case PHE : : : : : : : : : : : : : : : : : : : : : 87

A.5 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89

B Description of the Kernel Classes 90

B.1 Mode Class : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93

B.1.1 displayObject : : : : : : : : : : : : : : : : : : : : : : : : : : : 94

B.1.2 displaying : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 94

B.1.3 drag support : : : : : : : : : : : : : : : : : : : : : : : : : : : : 95

B.1.4 scroll support : : : : : : : : : : : : : : : : : : : : : : : : : : : 96

B.1.5 subMode access : : : : : : : : : : : : : : : : : : : : : : : : : : 96

B.1.6 superMode access : : : : : : : : : : : : : : : : : : : : : : : : : 97

B.1.7 layer manipulation : : : : : : : : : : : : : : : : : : : : : : : : : 97

B.1.8 layering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98

B.1.9 initialize-release : : : : : : : : : : : : : : : : : : : : : : : : : : 98

B.1.10 display box access : : : : : : : : : : : : : : : : : : : : : : : : : 99

B.1.11 controller access : : : : : : : : : : : : : : : : : : : : : : : : : : 99

B.1.12 event handling : : : : : : : : : : : : : : : : : : : : : : : : : : : 99

B.1.13 enter/leaveEvent-process : : : : : : : : : : : : : : : : : : : : : 100

B.1.14 subMode insert/delete : : : : : : : : : : : : : : : : : : : : : : 100

ix



6.1.3 Inappropriate Applications : : : : : : : : : : : : : : : : : : : : 60

6.2 Productivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

6.2.1 Subjects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

6.2.2 The Assignment : : : : : : : : : : : : : : : : : : : : : : : : : : 61

6.2.3 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

6.2.4 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

6.3 Performance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

6.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

7 Conclusion 67

7.1 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67

7.2 Future Research : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

A An Event-Driven Mechanism for MoDE 81

A.1 Background : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

A.2 Why Event-Driven? : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

A.3 An Event-Driven Mechanism : : : : : : : : : : : : : : : : : : : : : : : 83

A.3.1 Event Generator : : : : : : : : : : : : : : : : : : : : : : : : : : 84

A.3.2 Event Queue : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84

A.3.3 Event Dispatching and the MVC framework : : : : : : : : : : : 84

A.4 Compatibility : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85

A.4.1 De�nition of the Problem : : : : : : : : : : : : : : : : : : : : : 85

viii



4.2.2 MController : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

4.2.3 SemanticObject : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

4.2.4 MDisplayObject : : : : : : : : : : : : : : : : : : : : : : : : : : 37

4.2.5 Interactions Among the Four Kernel Classes : : : : : : : : : : : 38

4.2.6 Designing An Interface with MoDE : : : : : : : : : : : : : : : : 41

4.3 A Comparison to MVC framework : : : : : : : : : : : : : : : : : : : : 41

4.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

5 MoDE: Mode Composer 46

5.1 Mode Composer in Action : : : : : : : : : : : : : : : : : : : : : : : : : 46

5.2 Mode Editing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52

5.3 Connection Editing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

5.4 Library Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

5.5 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

5.5.1 Self-Creation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

5.5.2 Classes Do Not Make Good Types : : : : : : : : : : : : : : : : 55

5.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

6 Experience With MoDE 57

6.1 Generality : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

6.1.1 What MoDE Can Create : : : : : : : : : : : : : : : : : : : : : 57

6.1.2 What MoDE Can Be Extended To Create : : : : : : : : : : : : 59

vii



2.4.1 Strong Separation : : : : : : : : : : : : : : : : : : : : : : : : : 14

2.4.2 Poor Support for Linking User Interface and Application : : : 15

2.4.3 Limited Capability : : : : : : : : : : : : : : : : : : : : : : : : : 15

2.4.4 Little Support Beyond Coding : : : : : : : : : : : : : : : : : : 15

2.5 Research Goals : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

3 Concepts 17

3.1 MVC and Its Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

3.2 The Concept of a Mode-Based User Interface : : : : : : : : : : : : : : 19

3.2.1 What is a Mode? : : : : : : : : : : : : : : : : : : : : : : : : : : 19

3.2.2 Direct-manipulation Interfaces are Modal : : : : : : : : : : : : 20

3.3 The Mode User Interface Framework : : : : : : : : : : : : : : : : : : : 21

3.4 A User Interface Component Space and Its Axes : : : : : : : : : : : : 23

3.5 Connection Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

3.5.1 A Historical View of Connection Models : : : : : : : : : : : : : 28

3.5.2 The MoDE Connection Model : : : : : : : : : : : : : : : : : : 28

3.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

4 MoDE: Kernel 31

4.1 The MoDE Event-Driven Mechanism : : : : : : : : : : : : : : : : : : : 32

4.2 Basic Classes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

4.2.1 Mode : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

vi



Contents

1 Introduction 1

1.1 Problems and Solutions : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.2 Major Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.3 MoDE in Use : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.4 Organization of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : 7

1.5 A Note to the Reader : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

2 Background 8

2.1 Window Management Systems : : : : : : : : : : : : : : : : : : : : : : 8

2.2 Object-Oriented Programming : : : : : : : : : : : : : : : : : : : : : : 9

2.3 User Interface Management Systems (UIMS) : : : : : : : : : : : : : : 10

2.3.1 Interactive Technique Builders : : : : : : : : : : : : : : : : : : 10

2.3.2 \Glue" Support : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

2.3.3 Graphical Layout : : : : : : : : : : : : : : : : : : : : : : : : : : 13

2.3.4 Application Semantics First : : : : : : : : : : : : : : : : : : : : 13

2.4 Problems with UIMSs : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

v



Acknowledgements

I am deeply grateful to my advisor, Professor John B. Smith, for his guidance,

support and encouragement throughout my years as a graduate student. He made

me believe I could �nish, and helped me do it. I also want to thank the other mem-

bers of my thesis committee, Professor Frederick Brooks, Professor James Coggins,

Professor Rick Snodgrass, and Professor Stephen Weiss for their valuable comments

and suggestions.

The members of the textlab research group at UNC were all helpful. Particular

thanks to Murray Anderegg, Matt Barkley, Gordon Ferguson, Barry Elledge, Rick

Hawkes, Jieh-Shan Lin, and Don Stone.

I gratefully acknowledge the �nancial support provided by the National Sci-

ence Foundation (Grant #IRI-85-19517) and the Army Research Institute (Contract

#MDA903-86-C-0345).

I would like to thank my parents who let me know all my life that I could

achieve anything that I aspired to. Finally, I thank my wife Ke-Jen for her patience,

understanding, and hard work to ensure that I had the time I needed to complete

this work.

iv



c

1990

Yen-Ping Shan

ALL RIGHTS RESERVED



MoDE: An Object-Oriented User Interface Development

Environment Based on the Concept of Mode

by

Yen-Ping Shan

A Dissertation submitted to the faculty of the University of North Carolina at Chapel

Hill in partial ful�llment of the requirements for the degree of Doctor of Philosophy

in the Department of Computer Science.

Chapel Hill

1990

Approved by:

Advisor: John B. Smith

Reader: Stephen Weiss

Reader: Richard Snodgrass


